Inicio  /  Applied System Innovation  /  Vol: 5 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Design and Fabrication of Modified SMA-Connector Sensor for Detecting Water Adulteration in Honey and Natural Latex

Adisorn Nuan-On    
Niwat Angkawisittpan    
Nawarat Piladaeng and Chaiyong Soemphol    

Resumen

A detection system for water adulteration in honey is proposed. It consists of a modified SMA-connector sensor and a vector network analyzer. A modified SMA-connector sensor is applied to measure complex relative permittivity, electrical conductivity, and phase constant of honey samples with the open-ended method. The system is tested in the frequency range of 0.5?4.0 GHz at the sample temperature of 25 °C. The relationships between the complex relative permittivity, electrical conductivity, the phase constant, and the honey samples with different concentrations (0?30%w/w) are determined. The experimental results show that the real part of the complex relative permittivity is significantly proportional in honey samples with adulteration of water in the range of 0?30%w/w. The frequency of 0.6 GHz is a suitable frequency for detection with a real part of complex relative permittivity as an indicator. The frequency of 3.74 GHz is an appropriate frequency for detection with electrical conductivity as in indicator while the frequency of 4.0 GHz is suitable for detection with phase constant as an indicator. In addition, the data are analyzed with regression analysis. This technique is also performed on natural latex samples to determine the dry rubber content. The frequency of 0.5 GHz is a suitable frequency with a real part of complex relative permittivity as an indicator while the frequency of 4.0 GHz is a suitable frequency with an imaginary part of complex relative permittivity, electrical conductivity, and phase constant as the indicators. The results demonstrate that it is possible to apply this technique to determine the dry rubber content in the natural latex samples as well.

 Artículos similares

       
 
Bin Yu, Zhao Xu, Ruinan Mu, Anping Wang and Haifeng Zhao    
Thermal expansion is inevitable for space structures under the alternating temperature of outer space around the earth. This may lead to the thermal stress and deformation due to the mismatch of the coefficient of thermal expansion. Near-zero thermal exp... ver más
Revista: Aerospace

 
Zeqi Shi, Xiangkui Tan, Yiwei Wang, Pengyu Lv, Yong Zou, Xia Wan, Kai Lv, Bingzhen Li, Huiling Duan and Hongyuan Li    
Unmanned equipment, such as unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs), are widely used in marine science for underwater observation, rescue, military purposes, etc. However, current vehicles are not applicable in complex cr... ver más

 
Onyekachi Okorie, Asma Perveen, Didier Talamona and Konstantinos Kostas    
The integration of topology optimization into additive manufacturing provides unmatched possibilities for the sustainable manufacturing of lightweight, intricate, custom parts with less material at a lower production time and cost. This study aims to app... ver más
Revista: Applied Sciences

 
Eli Ohana and Dror Malka    
To test silicon photonics component performances, a silicon (Si) grating coupler (GC) is used to couple the light from a single-mode fiber (SMF) into the chip. However, silicon nitride (Si3N4) waveguides have recently become more popular for realizing ph... ver más
Revista: Applied Sciences

 
Alice Massimiani, Filippo Panini, Simone Luigi Marasso, Matteo Cocuzza, Marzia Quaglio, Candido Fabrizio Pirri, Francesca Verga and Dario Viberti    
Underground porous media are complex multiphase systems, where the behavior at the macro-scale is affected by physical phenomena occurring at the pore(micro)-scale. The understanding of pore-scale fluid flow, transport properties, and chemical reactions ... ver más
Revista: Water