ARTÍCULO
TITULO

Technical?Economic Feasibility Analysis of Subsea Shuttle Tanker

Yihan Xing    
Tan Aditya Dwi Santoso and Yucong Ma    

Resumen

This paper presents the technical and economic feasibility analysis of the subsea shuttle tanker (SST). The SST is proposed as an alternative to subsea pipelines and surface tankers with the primary purpose of transporting CO2 autonomously underwater from onshore facilities to subsea wells for direct injection at marginal subsea fields. In contrast to highly weather-dependent surface tanker operations, the SST can operate in any condition underwater. The technical?economic analysis is performed in two steps. First, the SST?s technical feasibility is evaluated by investigating designs with lower and higher capacities. The purpose is to observe the appearance of technical limits (if present) when the SST is scaled down or up in size. Second, an economic analysis is performed using the well-reviewed cost models from the publicly available Zero Emissions Platform (ZEP) and Maritime Un-manned Navigation through Intelligence in Networks (MUNIN) D9.3 reports. The scenarios considered are CO2 transport volumes of 1 to 20 million tons per annum (mtpa) with transport distances of 180 km to 1500 km in which the cost per ton of CO2 is compared between offshore pipelines, crewed/autonomous tanker ships, and SST. The results show that SSTs with cargo capacities 10,569 m3, 23,239 m3, and 40,730 m3 are technically feasible. Furthermore, the SSTs are competitive for short and intermediate distances of 180?750 km and smaller CO2 volumes of 1?2.5 mtpa. Lastly, it is mentioned that the SST design used the DNVGL Rules for Classification for Naval Vessels, Part 4 Sub-surface ships, Chapter 1 Submarine, DNVGL-RU-NAVAL-Pt4Ch1, which is primarily catered towards military submarine design. It is expected that a dedicated structural design code that is optimized for the SST would reduce the structural weight and corresponding capital expenditure (CAPEX).

 Artículos similares

       
 
Young-Cheol Kim, Dong-Hyeop Kim and Sang-Woo Kim    
To achieve the commercialization of electric vertical takeoff and landing (eVTOL) aircrafts, which have recently garnered attention as the next-generation means of transportation, objective certification based on rigorous procedures is essential. With th... ver más
Revista: Aerospace

 
Russell Shomberg, Michael Jakuba and Dana Yoerger    
We propose a design for a float capable of harvesting wave energy while fully submerged. The proposed design could theoretically operate indefinitely without ever breaching the surface. We developed and validated design guidelines for the proposed float ... ver más

 
Qirui Bo, Junwei Liu, Wenchang Shang, Ankit Garg, Xiaoru Jia and Kaiyue Sun    
Nowadays, the use of new compound chemical stabilizers to treat marine clay has gained significant attention. However, the complex non-linear relationship between the influencing factors and the unconfined compressive strength of chemically treated marin... ver más

 
Weidong Zhao, Bernt Johan Leira, Knut Vilhelm Høyland, Ekaterina Kim, Guoqing Feng and Huilong Ren    
This paper presents a framework for structural analysis of icebreakers during ramming of first-year ice ridges. The framework links the ice-ridge load and the structural analysis based on the physical characteristics of ship?ice-ridge interactions. A shi... ver más

 
Liming Li and Zeang Zhao    
To effectively enhance the adaptability of earthquake rescue robots in dynamic environments and complex tasks, there is an urgent need for an evaluation method that quantifies their performance and facilitates the selection of rescue robots with optimal ... ver más
Revista: Applied Sciences