ARTÍCULO
TITULO

Numerical Simulation and Design of a Shaftless Hollow Pump for Plankton Sampling

Shizhen Gao    
Zhihua Fan    
Jie Mao    
Minhui Zheng and Junyi Yang    

Resumen

It is important to marine ecology research that plankton samples are collected without damage, especially for time series samples. Usually, most fixed-point plankton samplers are made using a pump with paddle blades in order to increase the flow rate. But it can easily injure soft plankton. In this paper, a shaftless hollow sampling pump is designed, which can provide a highly efficient driving component for the plankton sampler. The numerical model of the sampling pump is established, and the flow rate of the sampling pump at different rotational speeds is simulated by the computational fluid dynamics method. In order to obtain a higher flow rate, the influence of internal and external cavity size, blade angle, and blade number on the flow rate of the sampling pump with a constant rotational speed of the blade was simulated and discussed. The results show that the flow rate at the internal cavity is positively correlated with the inlet and outlet pressure differences of the internal cavity, and the greater the negative pressure at the outlet of the internal cavity, the greater the flow rate. When the internal and external cavity sizes are h = 14 mm, d = 52 mm, blade angle ? = 45°, and number of blades s = 5, the flow rate of the sampling pump internal cavity reaches the maximum. Finally, the feasibility of the shaftless hollow sampling pump is verified by experiments. The shaftless hollow sampling pump can realize non-destructive sampling of plankton. This paper presents a theoretical design foundation for a new non-destructive siphon sampling method for marine plankton, which is of great significance for marine plankton sampling and subsequent research.

 Artículos similares

       
 
Jiayu Huang, Feng Diao, Shifeng Ding, Sen Han, Pentti Kujala and Li Zhou    
In previous studies of ship?ice interactions, most studies focused on ship?level ice interactions, overlooking potential rafted ice conditions in extreme ice conditions. The purpose of this study is to develop a numerical model for predicting ship resist... ver más
Revista: Water

 
Mosaad Ali Hussein Ali, Farag M. Mewafy, Wei Qian, Ajibola Richard Faruwa, Ali Shebl, Saleh Dabaa and Hussein A. Saleem    
The effective detection and monitoring of mining tailings? leachates (MTLs) plays a pivotal role in environmental protection and remediation efforts. Electrical resistivity tomography (ERT) is a non-invasive technique widely employed for mapping subsurfa... ver más
Revista: Water

 
Xiaomin Liu, Kezhi Wang, Tingxi Liu and Wenguang Wang    
Excessive sedimentation in sand-laden rivers significantly hinders the normal operation and overall effectiveness of reservoirs. This is observed particularly in plain-type sand-laden reservoirs where weak hydraulic conditions in the reservoir area contr... ver más
Revista: Water

 
Yangxin Zhang, Jiangmei Zhang, Tuantuan Liu, Xinghua Feng, Tengxiang Xie and Haolin Liu    
Many nuclear power plants have been built along China?s coasts, and the migration and diffusion of radioactive nuclides in coastal harbours is very concerning. In this study, considering the decay and free diffusion of radioactive nuclides, a local hydro... ver más
Revista: Water

 
Valentina Pintos Andreoli, Hikari Shimadera, Hiroto Yasuga, Yutaro Koga, Motoharu Suzuki and Akira Kondo    
This study developed a coupled atmospheric?marine model using the COAWST model system for the Harima Nada area between spring 2010 and winter 2011 to evaluate the seasonal influence of the Kako River?s discharge in the sea. The Kako River is one of the l... ver más
Revista: Water