ARTÍCULO
TITULO

Design of a Self-Organizing Routing Protocol for Underwater Wireless Sensor Networks Based on Location and Energy Information

Weizhen Guo    
Min Zhu    
Bo Yang    
Yanbo Wu and Xinguo Li    

Resumen

Underwater wireless sensor networks (UWSNs) are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, variable topology, limited battery, low processing power and so on. These new features pose many challenges to the design of self-organizing routing protocol for UWSNs. This paper focuses on the application of Ad Hoc On-demand Distance Vector (AODV) routing protocol in UWSNs. In order to solve the problems of packet collision and excessive energy consumption associated with the flooding-based routing discovery method and the periodic hello packet routing maintenance mechanism of AODV, a routing discovery and maintenance method based on location and energy information is proposed, and it is referred to as the route-focusing AODV (RFAODV) routing protocol. In the RFAODV protocol, the routing discovery process is focused on a few nodes through forwarding area control and dynamic delay adjustment. In addition, feedback from a media access control layer and residual energy control are used for routing maintenance. We implement the RFAODV and evaluate its performance according to the sea trial data as parameters in the NS-2. The simulation results show that compared with the other protocols, RFAODV improves the routing discovery success ratio by at least 18%, increases the packet transmission ratio by at least 4%, reduces the protocol overhead by at least 15% and reduces the energy consumption by at least 5% under various simulation scenarios. RFAODV is suitable for large-scale, high-load and dynamic networks underwater wireless sensor networks.

 Artículos similares