Inicio  /  Applied Sciences  /  Vol: 9 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Review of VSG Control-Enabled Universal Compatibility Architecture for Future Power Systems with High-Penetration Renewable Generation

Xiangwu Yan and Weichao Zhang    

Resumen

Due to the irreversible energy substitution from fossil fuels to clean energy, the development trend of future power systems is based on renewable energy generation. However, due to the incompatibility of converter-based non-dispatchable renewable energy generation, the stability and reliability of traditional power systems deteriorate as more renewables are introduced. Since conventional power systems are dominated by synchronous machines (SM), it is natural to utilize a virtual synchronous generator (VSG) control strategy that intimates SM characteristics on integrated converters. The VSG algorithm developed in this paper originates from mimicking mathematic models of synchronous machines. Among the different models of implementation, the second-order model is simple, stable, and compatible with the control schemes of current converters in traditional power systems. The VSG control strategy is thoroughly researched and case studied for various converter-interfaced systems that include renewable generation, energy storage, electric vehicles (EV), and other energy demands. VSG-based integration converters can provide grid services such as spinning reserves and inertia emulation to the upper grids of centralized plants, distributed generation networks, and microgrids. Thus, the VSG control strategy has paved a feasible way for an evolutionary transition to a power electronics-based future power grid. By referring to the knowledge of traditional grids, a hierarchical system of operations can be established. Finally, generation and loads can be united in universal compatibility architecture under consolidated synchronous mechanisms.

 Artículos similares

       
 
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más

 
Carlos Matos, Pedro Cabrera, José A. Carta and Noemi Melián-Martel    
Water scarcity is a global problem that particularly affects islands located in arid regions or regions with limited water resources. This issue has prompted the development of non-conventional water sources such as fossil fuel-powered desalination syste... ver más

 
Maria Helena de Sá    
This work discusses the current scenario and future growth of electrochemical energy devices, such as water electrolyzers and fuel cells. It is based on the pivotal role that hydrogen can play as an energy carrier to replace fossil fuels. Moreover, it is... ver más
Revista: Applied Sciences

 
Nhung Nguyen Hong and Huy Nguyen Duc    
In recent years, with the rapid increase in renewable energy sources (RESs), a Virtual Power Plant (VPP) concept has been developed to integrate many small-scale RESs, energy storage systems (ESSs), and customers into a unified agent in the electricity m... ver más
Revista: Applied Sciences

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más