ARTÍCULO
TITULO

Comparative Study of Clustering Approaches Applied to Spatial or Temporal Pattern Discovery

Kelly Grassi    
Émilie Poisson-Caillault    
André Bigand and Alain Lefebvre    

Resumen

In the framework of ecological or environmental assessments and management, detection, characterization and forecasting of the dynamics of environmental states are of paramount importance. These states should reflect general patterns of change, recurrent or occasional events, long-lasting or short or extreme events which contribute to explain the structure and the function of the ecosystem. To identify such states, many scientific consortiums promote the implementation of Integrated Observing Systems which generate increasing amount of complex multivariate/multisource/multiscale datasets. Extracting the most relevant ecological information from such complex datasets requires the implementation of Machine Learning-based processing tools. In this context, we proposed a divisive spectral clustering architecture?the Multi-level Spectral Clustering (M-SC) which is, in this paper, extended with a no-cut criteria. This method is developed to perform detection events for data with a complex shape and high local connexity. While the M-SC method was firstly developed and implemented for a given specific case study, we proposed here to compare our new M-SC method with several existing direct and hierarchical clustering approaches. The clustering performance is assessed from different datasets with hard shapes to segment. Spectral methods are most efficient discovering all spatial patterns. For the segmentation of time series, hierarchical methods better isolated event patterns. The new M-SC algorithm, which combines hierarchical and spectral approaches, give promise results in the segmentation of both spatial UCI databases and marine time series compared to other approaches. The ability of our M-SC method to deal with many kinds of datasets allows a large comparability of results if applies within a broad Integrated Observing Systems. Beyond scientific knowledge improvements, this comparability is crucial for decision-making about environmental management.

 Artículos similares

       
 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information

 
Annie Rose Elizabeth, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna and Mondeep Borthakur    
Multiple applications in aerospace utilize pyrotechnic charges for their operation, and these charges are predominantly in the form of granules. One of the most used charges is boron potassium nitrate (BPN), and the present study focuses on mathematicall... ver más
Revista: Aerospace

 
Kichan Sim and Kangsu Lee    
A digital twin is a virtual model of a real-world structure (such as a device or equipment) which supports various problems or operations that occur throughout the life cycle of the structure through linkage with the actual structure. Digital twins have ... ver más

 
Sen Deng, Weiqiang Zhao, Tianbao Huang, Ming Xia and Zhengwei Wang    
Kaplan turbines are generally used in working conditions with a high flow and low head. These are a type of axial-flow hydro turbine that can adjust the opening of the guide vanes and blades simultaneously in order to achieve higher efficiency under a wi... ver más

 
Max Käding and Steffen Marx    
Acoustic emission monitoring (AEM) has emerged as an effective technique for detecting wire breaks resulting from, e.g., stress corrosion cracking, and its application on prestressed concrete bridges is increasing. The success of this monitoring measure ... ver más
Revista: Applied Sciences