ARTÍCULO
TITULO

Understanding the Effects of Wind Intensity, Forward Speed, and Wave on the Propagation of Hurricane Harvey Surges

Madinah Shamsu and Muhammad Akbar    

Resumen

Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir?Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model?s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges.

 Artículos similares

       
 
Namitha Viona Pais, James O?Donnell and Nalini Ravishanker    
The design strategies for flood risk reduction in coastal towns must be informed by the likelihood of flooding resulting from both precipitation and coastal storm surge. This paper discusses various bivariate extreme value methods to investigate the join... ver más

 
Zhendong Zhu, Jiahao Zhang, Feihong Wang, Wenhui Feng, Leping Dang and Hongyuan Wei    
The physical properties of sodium cocoyl glycinate (SCG) and the synergistic effects within the SCG/CAPB complex system were investigated using visible?ultraviolet spectrophotometry and a surface tension meter. Analysis of the synergistic parameters of t... ver más
Revista: Applied Sciences

 
Hamed Taherdoost and Mitra Madanchian    
In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough e... ver más
Revista: AI

 
Carlos Novaes and Rui Cunha Marques    
Policies, Institutions and Regulation (PIR) aspects matter for different sectors? growth and inclusive sustainable development, but there is little information in the literature on how to evaluate the effects of PIR on management options and outcomes or,... ver más
Revista: Water

 
Peiyue Li and Jianhua Wu    
This editorial introduces the Special Issue titled ?Water Resources and Sustainable Development,? underscoring the critical need for sustainable management of water resources in light of increasing demand, climate change impacts, and pollution. The issue... ver más
Revista: Water