Inicio  /  Applied Sciences  /  Vol: 13 Par: 15 (2023)  /  Artículo
ARTÍCULO
TITULO

Propeller-Induced Jet Impact on Vegetated Flow Fields: Complex Coupled Effect towards the Velocity Profile

Jaan H. Pu    

Resumen

The failure of swirling ship propellers in marine environments can lead to huge repair costs. One of the main causes of such failure is when propellers tangle with vegetation, especially in shallow flow environments like ports, harbours, or shipyards. In order to understand the above-mentioned issue, this study proposes an analytical approach to explore efficient predictions and provide a flow guideline with respect to the co-existence of vegetation and propeller swirling effects. More specifically, we intend to investigate the full-depth theoretical velocity profile to represent propeller-induced flow under submerged vegetation conditions. This paper first investigates the modified logarithmic law approach to determine its suitability to represent the regional vegetated flow zone before implementing it into a three-layer analytical model. It was found, using the benchmark of literature measurements, that the modified log law improved the near-bed velocity calculation by nearly 70% when compared to an existing model. A propeller jet impact computation coupled into the vegetation analytical model was then investigated in different locations within the vegetated flow, i.e., at free-flow, water?vegetation interface, and vegetation-hindered zones, to study their complex velocity distribution patterns. The results demonstrate adequate validation with the vegetated flow and measured propeller jet data from the literature. This proves the potential of the proposed analytical approach in representing a real-world propeller jet event submerged in water flow with the existence of vegetation. The proposed novel method allows costless computation, i.e., as compared to conventional numerical models, in representing the complex interaction of the propeller jet and vegetated flow.

 Artículos similares

       
 
Joseph Mwangi Ng?aru and Sunho Park    
This research investigates cavitation around a marine propeller, employing computational fluid dynamic (CFD) solvers, including an incompressible, isothermal compressible, and fully compressible flow. The investigation commenced with simulations utilizin... ver más

 
Weimin Chen, Jiachen Ma, Jian Hu and Li Zhang    
Podded propulsion offers excellent maneuverability without the need for mechanically complex transmission systems. However, the hydrodynamic performance of podded propulsion under maneuvering conditions has not yet been adequately investigated. This stud... ver más

 
Oreste Russo, Andrea Aprovitola, Donato de Rosa, Giuseppe Pezzella and Antonio Viviani    
The efficiency increase that distributed propulsion could deliver for future hybrid-electric aircraft is in line with the urgent demand for higher aerodynamic performances and a lower environmental impact. Several consolidated proprietary tools (not alwa... ver más
Revista: Aerospace

 
Yadong Zhang and Yijun Liu    
A new approach to accelerating the evaluation of monopole and dipole source integrals via the fast multipole method (FMM) in the time domain for general three-dimensional (3-D) aeroacoustic problems is presented in this paper. In this approach, the aeroa... ver más
Revista: Acoustics

 
Ranieri Emanuele Nargi, Paolo Candeloro, Fabrizio De Gregorio, Giuseppe Ceglia and Tiziano Pagliaroli    
An investigation of twin corotating rotors? interaction effects was performed by load (thrust and torque) measurements, flow field dynamics through Time-Resolved Particle Image Velocimetry, and acoustic emissions using a microphone array. Two rotors, eac... ver más
Revista: Aerospace