Inicio  /  Water  /  Vol: 10 Par: 7 (2018)  /  Artículo
ARTÍCULO
TITULO

An Experimental and Theoretical Study on Separations by Vacuum Membrane Distillation Employing Hollow-Fiber Modules

Anthoula Karanasiou    
Margaritis Kostoglou and Anastasios Karabelas    

Resumen

Vacuum membrane distillation (VMD) is an attractive variant of the novel membrane distillation process, which is promising for various separations, including water desalination and bioethanol recovery through fermentation of agro-industrial by-products. This publication is part of an effort to develop a capillary membrane module for various applications, as well as a model that would facilitate VMD process design. Experiments were conducted in a laboratory pilot VMD unit, comprising polypropylene capillary-membrane modules. Performance data, collected at modest temperatures (37 °C to 65 °C) with deionized and brackish water, confirmed the improved system productivity with increasing feed-water temperature; excellent salt rejection was obtained. The recovery of ethanol from ethanol-water mixtures and from fermented winery by-products was also studied, in continuous, semi-continuous, and batch operating modes. At low-feed-solution temperature (27?47 °C), ethanol-solution was concentrated 4 to 6.5 times in continuous operation and 2 to 3 times in the semi-continuous mode. Taking advantage of the small property variation in the module axial-flow direction, a simple VMD process model was developed, satisfactorily describing the experimental data. This VMD model appears to be promising for practical applications, and warrants further R&D work.

 Artículos similares

       
 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Feng Tian, Mengjiao Wang and Xiaopei Liu    
Aiming at solving the problems of local halo blurring, insufficient edge detail preservation, and serious noise in traditional image enhancement algorithms, an improved Retinex algorithm for low-light mine image enhancement is proposed. Firstly, in HSV c... ver más
Revista: Applied Sciences

 
E. N. Sgourou, N. Sarlis, A. Chroneos and C. A. Londos    
Defects and impurities play a fundamental role in semiconductors affecting their mechanical, optical, and electronic properties. Nitrogen (N) impurities are almost always present in a silicon (Si) lattice, either unintentionally, due to the growth and pr... ver más
Revista: Applied Sciences

 
Saleh B. Alsaidi, Jeongmoo Huh and Mohamed Y. E. Selim    
The performance of two solid biomass wastes, date stone and jojoba solid waste, was experimentally examined for their potential application in combustion and propulsion systems. The fuels were tested in a hybrid rocket-like combustion environment, and th... ver más
Revista: Aerospace

 
Hanqiao Han, Yun Long and Jinqing Zhong    
When we tested the water jet propulsion pump, we found that there were significant vibrations in the pump, especially at small flow points that deviated from the design conditions. The water jet propulsion pump is a mixed-flow pump with guide vane, which... ver más