Inicio  /  Applied Sciences  /  Vol: 11 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Optimal Design and Experimental Verification of Ultrasonic Cutting Horn for Ceramic Composite Material

Mibbeum Hahn    
Yeungjung Cho    
Gunhee Jang and Bumcho Kim    

Resumen

We developed and optimized a block-type ultrasonic horn that can be used for cutting hard materials. The proposed block-type sonotrode consists of an aluminum horn and a tungsten carbide blade to increase the cutting of hard materials. We designed an initial ultrasonic block horn that has double slots and an exponential stepped profile. We developed a finite element model of the initial model and analyzed the characteristics of natural frequency and displacement. We formulated a DOE table and response surface to perform sensitivity analysis and analyze the correlation between the design variables and characteristics of the proposed block horn. The optimal ultrasonic block horn was derived via a multi-objective optimal design problem to maximize the amplitude uniformity of the proposed horn and frequency separation. We fabricated the optimal block horn and verified it experimentally. An ultrasonic cutting experiment was conducted to find the ultrasonic cutting force with hard ceramic composite materials. A cutting test with a conventional cutting machine under the same condition was also conducted to compare the cutting force. The proposed optimal ultrasonic cutter requires 70% less cutting force than the conventional cutter to cut a ceramic composite material and the cutting surface with the application of the proposed optimal ultrasonic cutter is much cleaner with no crack and delamination than that with the application of the conventional cutter.

 Artículos similares

       
 
Lucilene Silva, Tomas Grönstedt, Carlos Xisto, Luiz Whitacker, Cleverson Bringhenti and Marcus Lejon    
The ratio between blade height and chord, named the aspect ratio (AR), plays an important role in compressor aerodynamic design. Once selected, it influences stage performance, blade losses and the stage stability margin. The choice of the design AR invo... ver más
Revista: Aerospace

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Wen Gao, Yanqiang Bi, Xiyuan Li, Apeng Dong, Jing Wang and Xiaoning Yang    
Hybrid airships, combining aerodynamic lift and buoyant lift, are efficient near-space aircraft for scientific exploration, observation, and surveillance. Compared to conventional airplanes and airships, hybrid airships offer unique advantages, including... ver más
Revista: Aerospace

 
Yaneth Vasquez, Jair Franco, Mario Vasquez, Felipe Agudelo, Eleni Petala, Jan Filip, Jose Galvis and Oscar Herrera    
The tannery wastewater from the tanning stage (TWT) comprises organic and Cr pollutants, which can adversely affect aquatic life and have carcinogenic effects. In this study, we investigated the performance of a Fenton-like process using commercial Nano-... ver más
Revista: Water

 
Fatma Fakhfakh, Sahar Raissi, Karim Kriaa, Chemseddine Maatki, Lioua Kolsi and Bilel Hadrich    
The olive mill wastewater (OMW) treatment process is modeled and optimized through new design of experiments (DOE). The first step of the process is coagulation?flocculation using three coagulants (modeled with the mixture design) followed by photo-degra... ver más
Revista: Water