Inicio  /  Agriculture  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus

Fuat Kaya    
Ali Keshavarzi    
Rosa Francaviglia    
Gordana Kaplan    
Levent Basayigit and Mert Dedeoglu    

Resumen

Predicting soil chemical properties such as soil organic carbon (SOC) and available phosphorus (Ava-P) content is critical in areas where different land uses exist. The distribution of SOC and Ava-P is influenced by both natural and anthropogenic factors. This study aimed at (1) predicting SOC and Ava-P in a piedmont plain of Northeast Iran using the Random Forests (RF) and Cubist mathematical models and hybrid models (Regression Kriging), (2) comparing the models? results, and (3) identifying the key variables that influence the spatial dynamics of soil SOC and Ava-P under different agricultural practices. The machine learning models were trained with 201 composite surface soil samples and 24 ancillary data, including climate (C), organism (O), topography- relief (R), parent material (P) and key soil features (S) according to the SCORPAN digital soil mapping framework, which can predictively represent soil formation factors spatially. Clay, one of the most critical soil properties with a well-known relationship to SOC, was the most important predictor of SOC, followed by open-access multispectral satellite images-based vegetation and soil indices. Ava-P had a similar set of effective variables. Hybrid approaches did not improve model accuracy significantly, but they did reduce map uncertainty. In the validation set, Ava-P was calculated using the RF algorithm with a normalized root mean square (NRMSE) of 96.8, while SOC was calculated using the Cubist algorithm with an NRMSE of 94.2. These values did not change when using the hybrid technique for Ava-P; however, they changed just by 1% for SOC. The management of SOC content and the supply of Ava-P in agricultural activities can be guided by SOC and Ava-P digital distribution maps. Produced digital maps in which the soil scientist plays an active role can be used to identify areas where concentrations are high and need to be protected, where uncertainty is high and sampling is required for further monitoring.

 Artículos similares