ARTÍCULO
TITULO

CFD Simulation of Centrifugal Pump with Different Impeller Blade Trailing Edges

Hui Li    
Yongjun Chen    
Yang Yang    
Shixin Wang    
Ling Bai and Ling Zhou    

Resumen

The centrifugal pump is one of the most widely used types of power machinery in the field of ship and ocean engineering, and the shape of the impeller blade trailing edge has an important influence on their performance. To reveal the mechanism of the effect of different trailing edges on external performance, the internal flow of 16 types of impeller blade trailing edges of a centrifugal pump, consisting of Bezier trailing edges, rounding on the pressure side, cutting on the suction side, and the original trailing edge is studied by numerical simulation. The reverse flow, shaft power, and energy loss distribution in the impeller and diffuser along the streamwise direction are analyzed by calculating them on each micro control body sliced from the fluid domain. The entropy production theory and O-vortex identification method are used to display the magnitude and location of energy loss and the vortex structure. Finally, a static structural analysis of the impeller with different trailing edges is performed. The results show that different impeller trailing edges can clearly affect the efficiency of the pump, i.e., the thinner the trailing edge, the higher the efficiency, with the thickest model reducing efficiency by 5.71% and the thinnest model increasing efficiency by 0.59% compared to the original one. Changing the shape of the impeller trailing edge has a great influence on the reverse flow, shaft power, and energy loss near the impeller trailing edge and diffuser inlet but has little influence on the leading part of the impeller. The distribution of local entropy production rate, energy loss, and reverse flow along the streamwise direction shows similar rules, with a local maximum near the leading edge of the impeller due to the impact effect, and a global maximum near the impeller trailing edge resulting from strong flow separation and high vortex strength due to the jet-wake flow. Thinning the impeller trailing edge and smoothing its connection with the blade can reduce the vortex strength and entropy production near the impeller trailing edge and diffuser inlet, improve the flow pattern, and reduce energy loss, thus improving the pump efficiency. In all models, the maximum equivalent stress is less than 6.5 MPa and the maximum total deformation is less than 0.065mm. The results are helpful for a deeper understanding of the complex flow mechanism of the centrifugal pump with different blade trailing edges.

 Artículos similares

       
 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Manigandan Paneer, Josip Ba?ic, Damir Sedlar, ?eljan Lozina, Nastia Degiuli and Chong Peng    
This study investigates the impact of fluid loads on the elastic deformation and dynamic response of linear structures. A weakly coupled modal solver is presented, which involves the solution of a dynamic equation of motion with external loads. The mode ... ver más

 
Zhiyuan Hu, Peng Yu, Guohua Xu, Yongjie Shi, Feng Gu and Aijun Zou    
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. ... ver más
Revista: Aerospace

 
Guodong Zhang, Changjiang Wang, Shuzhan Bai, Guoxiang Li, Ke Sun and Hao Cheng    
To further improve the performance of the Proton Exchange Membrane Fuel Cell (PEMFC), in this paper, we designed a blocked flow channel with trapezoidal baffles, and geometric parameters of the baffle were optimized based on CFD simulation, Artificial Ne... ver más
Revista: Applied Sciences

 
Ping Liu, Wentao Shi, Bo Sun, Qian Wang, Xiaokun Xie and Changqing Li    
Burial stone relics remain in a humid, semi-enclosed environment for long periods, and temperature and humidity variations can cause deterioration acceleration. Yang Can?s tomb was selected as the research object, and field monitoring and simulations wer... ver más
Revista: Applied Sciences