ARTÍCULO
TITULO

Innovative Characterization and Comparative Analysis of Water Level Sensors for Enhanced Early Detection and Warning of Floods

Rula Tawalbeh    
Feras Alasali    
Zahra Ghanem    
Mohammad Alghazzawi    
Ahmad Abu-Raideh and William Holderbaum    

Resumen

In considering projections that flooding will increase in the future years due to factors such as climate change and urbanization, the need for dependable and accurate water sensors systems is greater than ever. In this study, the performance of four different water level sensors, including ultrasonic, infrared (IR), and pressure sensors, is analyzed based on innovative characterization and comparative analysis, to determine whether or not these sensors have the ability to detect rising water levels and flash floods at an earlier stage under different conditions. During our exhaustive tests, we subjected the device to a variety of conditions, including clean and contaminated water, light and darkness, and an analogue connection to a display. When it came to monitoring water levels, the ultrasonic sensors stood out because of their remarkable precision and consistency. To address this issue, this study provides a novel and comparative examination of four water level sensors to determine which is the most effective and cost-effective in detecting floods and water level fluctuations. The IR sensor delivered accurate findings; however, it demonstrated some degree of variability throughout the course of the experiment. In addition, the results of our research show that the pressure sensor is a legitimate alternative to ultrasonic sensors. This presents a possibility that is more advantageous financially when it comes to the development of effective water level monitoring systems. The findings of this study are extremely helpful in improving the dependability and accuracy of flood detection systems and, eventually, in lessening the devastation caused by natural catastrophes.

 Artículos similares

       
 
Valerio Biancalana and Piero Chessa    
We analyze the information that can be retrieved from the tracking parameters produced by an innovative wearable eye tracker. The latter is based on a permanent-magnet marked corneal lens and by an array of magnetoresistive detectors that measure the mag... ver más
Revista: Instruments

 
Ioana Demetrescu, Radu Nartita, Mihai Andrei, Andreea Cristiana Didilescu, Anisoara Cimpean and Daniela Ionita    
Amidst the prevalence of aggressive bacterial infections that can impact both oral and systemic health following various dental and implant procedures, the search for alternative, high-performing and biocompatible materials has become a challenging pursu... ver más
Revista: Applied Sciences

 
Manasik M. Nour, Maha A. Tony and Hossam A. Nabwey    
The ever-increasing technological advancement and industrialization are leading to a massive discharge of hazardous waste into the aquatic environment, calling on scientists and researchers to introduce environmentally benign solutions. In this regard, t... ver más
Revista: Applied Sciences

 
Rehab O. Abdel Rahman, Ahmed M. El-Kamash and Yung-Tse Hung    
Permeable concrete is a class of materials that has long been tested and implemented to control water pollution. Its application in low-impact development practices has proved its efficiency in mitigating some of the impacts of urbanization on the enviro... ver más
Revista: Water

 
Loris Barillari, Augusto Della Torre, Gianluca Montenegro and Angelo Onorati    
In the last decade, additive manufacturing (AM) techniques have been progressively applied to the manufacturing of many mechanical components. Compared to traditional techniques, this technology is characterized by disruptive potential in terms of the co... ver más
Revista: Applied Sciences