ARTÍCULO
TITULO

A Novel Acoustic Sediment Classification Method Based on the K-Mdoids Algorithm Using Multibeam Echosounder Backscatter Intensity

Xiaochen Yu    
Jingsheng Zhai    
Bo Zou    
Qi Shao and Guangchao Hou    

Resumen

The modern discrimination of sediment is based on acoustic intensity (backscatter) information from high-resolution multibeam echo-sounder systems (MBES). The backscattering intensity, varying with the angle of incidence, reveals the characteristics of seabed sediment. In this study, we propose a novel unsupervised acoustic sediment classification method based on the K-medoids algorithm using multibeam backscattering intensity data. In this method, we use the Lurton parameters model, which is the relationship between the backscattering intensity and incidence, to obtain the backscattering angle corresponding curve, and we use the genetic algorithm to fit the curve by the least-squares method. After extracting the four relevant parameters of the model when the ideal fitting effect was achieved, we input the characteristic parameters obtained from the fitting to the K-medoids clustering model. To validate the proposed classification method, we compare it with the self-organizing map (SOM) neural network classification method under the same parameter settings. The results of the experiment show that when the seabed sediment category is less than or equal to 3, the results of the K-medoids algorithm and the SOM neural network are approximately identical. As the sediment category increases, the SOM neural network shows instability, and it is impossible to see the clear boundaries of the seabed sediment, while the K-medoids category is 5 and the seabed sediment classification is correct. After comparing with field in situ seabed sediment sampling along the MBES survey line, the sediment classification method based on K-medoids is consistent with the distribution of the field sediment sampling. The classification accuracies for bedrock, sandy clay, and silty sand are all above 90%; those for gravel and clay are nearly 80%, and the overall accuracy reaches 89.7%.

 Artículos similares

       
 
Chengxu Feng, Yasong Luo, Jianqiang Zhang and Houpu Li    
The underwater acoustic communication technique for high-speed and highly reliable information transmission in the ocean has been one of the popular research focuses facing the fast-growing information technology sector and the accelerating development o... ver más

 
Mikhail V. Golub, Ilya A. Moroz, Yanzheng Wang, Artur D. Khanazaryan, Kirill K. Kanishchev, Evgenia A. Okoneshnikova, Alisa N. Shpak, Semyon A. Mareev and Chuanzeng Zhang    
A novel kind of acoustic metamaterials (AMMs) with unit cells composed of two layers made of dissimilar materials with a crack-like void situated at the interface between bars is considered. Recently, the authors showed numerically that this novel kind o... ver más
Revista: Acoustics

 
Ruixiang Kan, Mei Wang, Xin Liu, Xiaojuan Liu and Hongbing Qiu    
For indoor sensor systems, it is essential to implement an extra supporting area notification part. To inform the real-time coordinates, the time difference of arrival (TDOA) algorithm can be introduced. For these indoor localization systems, their main ... ver más
Revista: Applied Sciences

 
Mi Tian, Shengfa Yang and Peng Zhang    
The acoustic method, which enables continuous monitoring with great temporal resolution, is an alternative technique for detecting bedload movement. In order to record the sound signals produced by the impacts between gravel particles and detect the bedl... ver más
Revista: Water

 
Jinshun Hu, Yongshui Lin, Zhiwei Zhou, Xiaofei Cao, Qingjia Chi and Weiguo Wu    
To further improve the low-frequency broadband sound absorption capability of the underwater anechoic layer (UAL) on the surface of marine equipment, a novel sound absorption structure with cavities (NSSC) is designed by adding resonators and honeycombs ... ver más