Inicio  /  Infrastructures  /  Vol: 6 Par: 6 (2021)  /  Artículo
ARTÍCULO
TITULO

Parametric Study on the Applicability of AASHTO LRFD for Simply Supported Reinforced Concrete Skewed Slab Bridges

Lucía Moya and Eva O. L. Lantsoght    

Resumen

Simplified code provisions can be used for the analysis and design of straight slab bridges. However, several studies question the appropriateness of simplified procedures for skewed geometries. This paper provides practical insights to the designer regarding the effects of skewness in reinforced concrete slab bridges by evaluating how simplified and more refined analysis procedures impact the design magnitudes and resulting reinforcement layouts. The methods used for this study are analytical and numerical case studies. Eighty case study slab bridges with varying lengths, widths, and skew angles are subjected to the AASHTO HL-93 loading. Then, the governing moments and shear forces are determined using the AASHTO LRFD simplified procedures with hand calculations, and using linear finite element analysis (LFEA). Afterwards, the reinforcement is designed according to the AASHTO LRFD design provisions. From these case studies, it is found through the LFEA that increasing skew angles result in decreasing amounts of longitudinal reinforcement and increasing amounts of transverse flexural reinforcement. Comparing the reinforcement layouts using AASHTO LRFD-based hand calculations and LFEA, we find that using LFEA reduces the total weight of steel reinforcement needed. Moreover, as the skew increases, LFEA captures increased shear forces at the obtuse corner that AASHTO LRFD does not. In conclusion, it is preferable to design the reinforcement of skewed reinforced concrete slab bridges using LFEA instead of hand calculations based on AASHTO LRFD for cost reduction and safety in terms of shear resistance in the obtuse corners.

 Artículos similares

       
 
Qiankun Wang, Ke Zhu, Peiwen Guo, Jiaji Zhang and Zhihua Xiong    
Faced with the challenges of global climate change, zero-carbon buildings (ZCB) serve as a crucial means to achieve carbon peak and carbon neutrality goals, particularly in the development of tropical island regions. This study aims to establish a ZCB te... ver más
Revista: Applied Sciences

 
Liang Li, Guangchun Han and Shunying Ji    
Accurately assessing ice loads is a fundamental issue in the field of structural design for ships in ice-covered regions. In this paper, we conducted research on extreme ice load estimation for icebreaking ships, combining stochastic theory with numerica... ver más

 
Fariha Imam, Petr Musilek and Marek Z. Reformat    
Due to aging infrastructure, technical issues, increased demand, and environmental developments, the reliability of power systems is of paramount importance. Utility companies aim to provide uninterrupted and efficient power supply to their customers. To... ver más
Revista: Information

 
Bin Jia, Qing Wang, Lei Ju, Chenjun Hu, Rongsheng Zhao, Duanfeng Han and Fuzhen Pang    
The vertical ice breaking of marine structures in ice-covered areas involves the deformation and failure of an ice sheet. Different from the existing conventional scenarios where the ice sheet is used as a transportation and support medium, the damage to... ver más

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures