Inicio  /  Applied Sciences  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Analysis of Shield Tunnel Ground Deformation Characteristics and Affecting Factors in Water-Rich Soft Stratum: A Case Study on the Section Tunnel of Tianjin Metro Line 6

Xinyu Li    
Dingli Zhang and Yanjuan Hou    

Resumen

With the increasing intensity of underground development, the planned metro lines will inevitably pass through water-rich soft stratum. The existing research results show that shield tunneling in water-rich stratum is prone to ground settlement and segment cracking due to the large moisture content and the low soil strength, which will pose risks to the safety of construction. The prediction of ground deformation characteristics and influencing ranges caused by shield tunneling in water-rich soft stratum has been a topical issue among the tunnel research community. Based on the shield tunnel project of Tianjin Metro Line 6, supported by the monitoring data, this paper analyses the ground deformation characteristics caused by shield tunneling in water-rich soft stratum. The results suggest that the surface settlement ranges from -14.20 mm to -28.00 mm in Tianjin?s water-rich soft stratum, which is at an acceptable level of engineering. A refined 3D model addressing fluid?structure interactions is developed to consider the construction process in water-rich soft stratum. Based on this technique, this article focuses on the effect of the support pressure at the excavation surface, the friction between the shield skin and the soil, and synchronous grouting quantity on the ground settlement and structural deformation. The results show that the friction between the shield skin and the soil is the most detrimental to deformation control, whereas the synchronous grouting quantity is the most advantageous to ground and segment deformation control. In practice, timely injection of bentonite slurry reduces friction between the shield skin and the soil, and effective synchronous grouting reduces shield tunneling disruption. This technique can provide calculation support in the optimization of shield tunneling schemes in water-rich soft stratum.

 Artículos similares

       
 
Siliang Du, Yi Zha and Qijun Zhao    
The concept of the Fan Wing, a novel aircraft vector-force-integrated device that combines a power unit with a fixed wing to generate distributed lift and thrust by creating a low-pressure vortex on the wing?s surface, was studied. To investigate the uni... ver más
Revista: Aerospace

 
María Elena Tejeda-del-Cueto, Manuel Alberto Flores-Alfaro, Miguel Toledo-Velázquez, Lorena del Carmen Santos-Cortes, José Hernández-Hernández and Marco Osvaldo Vigueras-Zúñiga    
The objective of this study is to develop a genetic algorithm that uses the IGP parameterization to increase the lift coefficient (CL) of three airfoils to be used on wings of unmanned aerial vehicles (UAVs). The geometry of three baseline airfoils was m... ver más
Revista: Aerospace

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace

 
Jianying Wei, Yuming Liu, Xiaochun Lu, Yu Feng and Yadi Wang    
Tunnel construction projects are a classic type of repetitive project, and hold a crucial position in the construction industry. The linear scheduling method (LSM) has been in the spotlight in scheduling optimization for repetitive construction projects ... ver más
Revista: Applied Sciences

 
Daniil Sergeev, Irina V?yushkina, Vladimir Eremeev, Andrei Stulenkov and Kirill Pyalov    
This paper presents the results of a study of self-sustained processes excited in a Helmholtz resonator after a flow over its orifice. A comparative analysis of various approaches to the numerical modeling of this problem was carried out, taking into acc... ver más
Revista: Acoustics