Inicio  /  Hydrology  /  Vol: 3 Par: 2 (2016)  /  Artículo
ARTÍCULO
TITULO

Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

Ansoumana Bodian    
Alain Dezetter    
Abdoulaye Deme and Lamine Diop    

Resumen

The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM) satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River) before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model) à 4 paramètres Journalier (4 parameters Daily)) has been used, calibrated and validated over the 1961?1997 period with rainfall and Potential Evapotranspiration (PET) as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998?2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998?2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE) of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

 Artículos similares

       
 
Toshiharu Kojima, Ryoma Shimono, Takahiro Ota, Hiroshi Hashimoto and Yasuhiro Hasegawa    
The ecosystem services of forests, such as the water conservation function, are the combined results of diverse processes, and the modification of one part of a forest affects each ecosystem service separately via complex processes. It is necessary to de... ver más
Revista: Water

 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Ali Uzunlar and Muhammet Omer Dis    
The hydrological cycle should be scrutinized and investigated under recent climate change scenarios to ensure global water management and to increase its utilization. Although the FAO proposed the use of the Penman?Monteith (PM) equation worldwide to pre... ver más
Revista: Water

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water