ARTÍCULO
TITULO

Dynamic Safety Assessment and Enhancement of Port Operational Infrastructure Systems during the COVID-19 Era

Siqi Wang    
Jingbo Yin and Rafi Ullah Khan    

Resumen

Seaports function as lifeline systems in maritime transportation, facilitating critical processes like shipping, distribution, and allied cargo handling. These diverse subsystems constitute the Port Infrastructure System (PIS) and have intricate functional interdependencies. The PIS is vulnerable to several external disruptions, and the impact of COVID-19 is severe and unprecedented in this domain. Therefore, this study proposes a novel general port safety framework to cope with recurring hazards and crisis events like COVID-19 and to augment PIS safety through a multi-state failure system. The PIS is divided into three critical subsystems: shipping, terminal, and distribution infrastructure, thereby capturing its functional interdependency and intricacy. A dynamic input?output model is employed, incorporating the spatial variability and average delay of the disruption, to determine the PIS resilience capacity under the stated disruptions. This study simulates three disruption scenarios and determines the functional failure capacity of the system by generating a functional change curve in Simulink. This study offers viable solutions to port managers, terminal operators, and concerned authorities in the efficient running of intricate interdependent processes and in devising efficient risk control measures to enhance overall PIS resilience and reliability. As part of future studies, given the difficulty in obtaining relevant data and the relatively limited validation of the current model, we aim to improve the accuracy and reliability of our model and enhance its practical applicability to real-world situations with data collected from a real-world case study of a PIS system.

 Artículos similares

       
 
Chunjie Zheng, Haitao Wang, Lanxiang Hu and Yuanli Cai    
To study the hose-and-drogue system?s motion under bow waves, this paper established a dynamic model of the hose-and-drogue system based on the multibody dynamics theory and the rigid ball-and-rod model. The wake of a tanker aircraft was taken into accou... ver más
Revista: Aerospace

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Tianhui Fan, Jianhu Fang, Xinkuan Yan and Yuan Ma    
The floating offshore wind turbine provides a feasible solution for the development of renewable ocean energy. However, the sizeable rotor diameter of the wind turbine results in large wind heeling moments and pitch amplitude. It will increase the struct... ver más

 
Zhao Wang, Hongjian Wang, Jianya Yuan, Dan Yu, Kai Zhang and Jingfei Ren    
The complex underwater environment poses significant challenges for unmanned underwater vehicles (UUVs), particularly in terms of communication constraints and the need for precise cooperative obstacle avoidance and trajectory tracking. Addressing these ... ver más