Inicio  /  Buildings  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Combining Deep Fully Convolutional Network and Graph Convolutional Neural Network for the Extraction of Buildings from Aerial Images

Wenzhuo Zhang    
Mingyang Yu    
Xiaoxian Chen    
Fangliang Zhou    
Jie Ren    
Haiqing Xu and Shuai Xu    

Resumen

Deep learning technology, such as fully convolutional networks (FCNs), have shown competitive performance in the automatic extraction of buildings from high-resolution aerial images (HRAIs). However, there are problems of over-segmentation and internal cavity in traditional FCNs used for building extraction. To address these issues, this paper proposes a new building graph convolutional network (BGC-Net), which optimizes the segmentation results by introducing the graph convolutional network (GCN). The core of BGC-Net includes two major modules. One is an atrous attention pyramid (AAP) module, obtained by fusing the attention mechanism and atrous convolution, which improves the performance of the model in extracting multi-scale buildings through multi-scale feature fusion; the other is a dual graph convolutional (DGN) module, the build of which is based on GCN, which improves the segmentation accuracy of object edges by adding long-range contextual information. The performance of BGC-Net is tested on two high spatial resolution datasets (Wuhan University building dataset and a Chinese typical city building dataset) and compared with several state-of-the-art networks. Experimental results demonstrate that the proposed method outperforms several state-of-the-art approaches (FCN8s, DANet, SegNet, U-Net, ARC-Net, BAR-Net) in both visual interpretation and quantitative evaluations. The BGC-Net proposed in this paper has better results when extracting the completeness of buildings, including boundary segmentation accuracy, and shows great potential in high-precision remote sensing mapping applications.

 Artículos similares

       
 
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más

 
Shuai Lu, Haibo Chen and Yilong Teng    
Traffic flow prediction is a crucial research area in traffic management. Accurately predicting traffic flow in each area of the city over the long term can enable city managers to make informed decisions regarding the allocation of urban transportation ... ver más

 
Jui-Fa Chen, Yu-Ting Liao and Po-Chun Wang    
Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable fluctuations in river water levels. This environment necessitates the development of real-time, automated systems for water level detection. Due to degradation, tra... ver más
Revista: Water

 
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang     Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so... ver más

 
Jiantao Qu, Chunyu Qi and He Meng    
Within the Shuo Huang Railway Company (Suning, China ) the long-term evolution for railways (LTE-R) network carries core wireless communication services for trains. The communication performance of LTE-R cells directly affects the operational safety of t... ver más
Revista: Future Internet