Inicio  /  Clean Technologies  /  Vol: 3 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity

Thomas Quaid and M. Toufiq Reza    

Resumen

Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However, contaminants? presence in biogas might affect the carbon capture by DES. In this study, conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of temperature, pressure, and selective contaminants on five DES? namely, choline chloride-urea, choline chloride-ethylene glycol, tetra butyl ammonium chloride-ethylene glycol, tetra butyl ammonium bromide-decanoic acid, and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this paper are hydrogen sulfide, ammonia, water, nitrogen, octamethyltrisiloxane, and decamethylcyclopentasiloxane. At infinite dilution, CO2 solubility dependence upon temperature in each DES was examined by means of Henry?s Law constants. Next, the systems were modeled from infinite dilution to equilibrium using the modified Raoults? Law, where CO2 solubility dependence upon pressure was examined. Finally, solubility of CO2 and CH4 in the various DES were explored with the presence of varying mole percent of selective contaminants. Among the parameters studied, it was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2 solubility. Other factors affecting the solubility are alkyl chain length of the HBA, the associated halogen, and the resulting polarity of the DES. It was also found that choline chloride-urea is the most selective to CO2, but has the lowest CO2 solubility, and is the most polar among other solvents. On the other hand, tetraoctylammonium chloride-decanoic acid is the least selective, has the highest maximum CO2 solubility, is the least polar, and is the least affected by its environment.

 Artículos similares

       
 
Kenichiro Takeishi and Robert Krewinkel    
In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, s... ver más

 
Jennifer Reeve, Oliver Grasham, Tariq Mahmud and Valerie Dupont    
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil, as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR), C-SR with CO2 capture (C-SR-C... ver más

 
Anja Pfennig and Axel Kranzmann    
To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geologi... ver más

 
Jonathan Paul Marshall    
Carbon capture and storage (CCS) appears to be essential for lowering emissions during the necessary energy transition. However, in Australia, it has not delivered this result, at any useful scale, and this needs explanation. To investigate the reasons f... ver más

 
Christiano B. Peres, Pedro M. R. Resende, Leonel J. R. Nunes and Leandro C. de Morais    
One of society?s major current challenges is carbon dioxide emissions and their consequences. In this context, new technologies for carbon dioxide (CO2) capture have attracted much attention. One of these is carbon capture and utilization (CCU). This wor... ver más