ARTÍCULO
TITULO

Load Frequency Control of Marine Microgrid System Integrated with Renewable Energy Sources

Guoqiang Zhang    
Irfan Ahmed Khan    
Amil Daraz    
Abdul Basit and Muhammad Irshad Khan    

Resumen

In seaports, low-carbon energy systems and energy efficiency have become increasingly important as a result of the evolution of environmental and climate change challenges. In order to ensure the continued success of seaports, technological advancements must be introduced to a number of systems, such as seaport vehicles, harbor cranes, and the power sources of berthed ships. Harbor areas might need a microgrid to handle these aspects. Typically, microgrids that substitute conventional generator units with renewable energy sources (RES) suffer from system inertia problems, which adversely affect microgrid frequency stability. A load frequency controller (LFC) based on a novel modified proportional integral derivative with filter (MPIDF) is presented in this paper for enhancing the performance of marine microgrid system (MMS). The serval optimization algorithm (SOA), a recent bio-inspired optimization algorithm, is used to optimize the MPIDF controller coefficients. This controller is tested on a marine microgrid containing a number of RES such as wind turbine generators, sea wave energy, and solar generation. The efficacy of the proposed MPIDF controller is verified with respect to other controllers such as PIDF and PI. Similarly, the proposed meta-heuristic algorithm is validated as compared to other algorithms including particle swarm optimization (PSO), ant colony optimization (ACO), and jellyfish swarm optimization (JSO). This study also evaluates the robustness of the proposed controller to different perturbations in step load, changes in system parameters, and other parameter variations.

 Artículos similares

       
 
Jifeng Jin, Lin Shang, Zijian Yang, Haiwang Wang and Guotong Li    
Satellite networks show the development trend in global coverage, flexible access, and reliable transmission. They are the key to building a wide coverage, massive connection, three-dimensional, all-round, all-weather, space-, air- and ground-integrated ... ver más
Revista: Applied Sciences

 
Jianwei Yang, Changdong Liu, Peishan Liu and Yue Zhao    
Cracks are one of the most common diseases of tunnel lining, and the structural dynamic response can be used to assess the health of a tunnel. Hence, this paper investigates the dynamic response of shield tunnel lining with a partly circumferential crack... ver más
Revista: Applied Sciences

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Kichan Sim and Kangsu Lee    
A digital twin is a virtual model of a real-world structure (such as a device or equipment) which supports various problems or operations that occur throughout the life cycle of the structure through linkage with the actual structure. Digital twins have ... ver más

 
Florence Paris, Remy Casanova, Marie-Line Bergeonneau and Daniel Mestre    
Maintenance is a highly procedural activity requiring motor and cognitive engagement. The aim of this experimental study was to examine how expertise affects maintenance tasks, in particular, the use of procedural documents. A total of 22 aircraft mainte... ver más
Revista: Applied Sciences