Inicio  /  Algorithms  /  Vol: 16 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Multi-Guide Set-Based Particle Swarm Optimization for Multi-Objective Portfolio Optimization

Kyle Erwin and Andries Engelbrecht    

Resumen

Portfolio optimization is a multi-objective optimization problem (MOOP) with risk and profit, or some form of the two, as competing objectives. Single-objective portfolio optimization requires a trade-off coefficient to be specified in order to balance the two objectives. Erwin and Engelbrecht proposed a set-based approach to single-objective portfolio optimization, namely, set-based particle swarm optimization (SBPSO). SBPSO selects a sub-set of assets that form a search space for a secondary optimization task to optimize the asset weights. The authors found that SBPSO was able to identify good solutions to portfolio optimization problems and noted the benefits of redefining the portfolio optimization problem as a set-based problem. This paper proposes the first multi-objective optimization (MOO) approach to SBPSO, and its performance is investigated for multi-objective portfolio optimization. Alongside this investigation, the performance of multi-guide particle swarm optimization (MGPSO) for multi-objective portfolio optimization is evaluated and the performance of SBPSO for portfolio optimization is compared against multi-objective algorithms. It is shown that SBPSO is as competitive as multi-objective algorithms, albeit with multiple runs. The proposed multi-objective SBPSO, i.e., multi-guide set-based particle swarm optimization (MGSBPSO), performs similarly to other multi-objective algorithms while obtaining a more diverse set of optimal solutions.

 Artículos similares

       
 
Christoforos S. Rekatsinas, Dimitris K. Dimitriou and Nikolaos A. Chrysochoidis    
The present paper investigates the design process and the dimensioning of a tailless type-C composite sandwich unmanned aerial vehicle (UAV). The objective is to investigate an innovative aircraft configuration which exceeds the standard approach of ribs... ver más
Revista: Aerospace

 
Aliyye Kara, Ibrahim Eksin and Ata Mugan    
The design optimization of structures can be conducted in either the time domain or the frequency domain. The frequency domain approach is advantageous compared to its time domain counterpart, especially if the degree of freedom is large, the objectives ... ver más
Revista: Applied Sciences

 
Tomasz Rogala, Mateusz Scieszka, Andrzej Katunin and Sandris Rucevskis    
Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement ... ver más
Revista: Applied Sciences

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Tianlong Li, Tao Zhang and Wenhua Li    
This paper presents a two-step approach for optimizing the configuration of a mobile photovoltaic-diesel-storage microgrid system. Initially, we developed a planning configuration model to ensure a balance between the mobility of components and a sustain... ver más
Revista: Applied Sciences