ARTÍCULO
TITULO

Combining Deep Learning and Robust Estimation for Outlier-Resilient Underwater Visual Graph SLAM

Antoni Burguera    
Francisco Bonin-Font    
Eric Guerrero Font and Antoni Martorell Torres    

Resumen

Visual Loop Detection (VLD) is a core component of any Visual Simultaneous Localization and Mapping (SLAM) system, and its goal is to determine if the robot has returned to a previously visited region by comparing images obtained at different time steps. This paper presents a new approach to visual Graph-SLAM for underwater robots that goes one step forward the current techniques. The proposal, which centers its attention on designing a robust VLD algorithm aimed at reducing the amount of false loops that enter into the pose graph optimizer, operates in three steps. In the first step, an easily trainable Neural Network performs a fast selection of image pairs that are likely to close loops. The second step carefully confirms or rejects these candidate loops by means of a robust image matcher. During the third step, all the loops accepted in the second step are subject to a geometric consistency verification process, being rejected those that do not fit with it. The accepted loops are then used to feed a Graph-SLAM algorithm. The advantages of this approach are twofold. First, the robustness in front of wrong loop detection. Second, the computational efficiency since each step operates only on the loops accepted in the previous one. This makes online usage of this VLD algorithm possible. Results of experiments with semi-synthetic data and real data obtained with an autonomous robot in several marine resorts of the Balearic Islands, support the validity and suitability of the approach to be applied in further field campaigns.

 Artículos similares

       
 
Aravind Kolli, Qi Wei and Stephen A. Ramsey    
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne... ver más
Revista: Computation

 
Jih-Ching Chiu, Guan-Yi Lee, Chih-Yang Hsieh and Qing-You Lin    
In computer vision and image processing, the shift from traditional cameras to emerging sensing tools, such as gesture recognition and object detection, addresses privacy concerns. This study navigates the Integrated Sensing and Communication (ISAC) era,... ver más

 
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi    
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ... ver más
Revista: Algorithms

 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Nirmal Acharya, Padmaja Kar, Mustafa Ally and Jeffrey Soar    
Significant clinical overlap exists between mental health and substance use disorders, especially among women. The purpose of this research is to leverage an AutoML (Automated Machine Learning) interface to predict and distinguish co-occurring mental hea... ver más
Revista: Applied Sciences