Inicio  /  Water  /  Vol: 15 Par: 15 (2023)  /  Artículo
ARTÍCULO
TITULO

An Assessment of Soil Loss by Water Erosion in No-Tillage and Mulching, China

Zhen Cao    
Guohui Chen    
Song Zhang    
Shangshu Huang    
Yan Wu    
Fangjin Dong    
Yuming Guo    
Jianhao Wang and Fahui Jiang    

Resumen

Soil erosion poses a global threat to arable land and its sustainability, particularly in China, where the most severe soil erosion exists worldwide. No-tillage (NT) and mulching (NTS) are considered the most effective soil management techniques for reducing erosion, but only 10% of the global area utilizes them. Therefore, in comparison to conventional tillage (CT), we conducted a comprehensive national assessment of NT and NTS to evaluate their impact on water erosion across China?s croplands for the period spanning 2000 to 2018, through using Revised Universal Soil Loss Equation (RUSLE); subsequently, we projected the temporal and spatial erosion distribution, and examined their effects of various underlying driving factors by using a random-forest model. Nationally, the average soil loss rates were 1085, 564, and 396 t km-2 a-1 for the CT, NT, and NTS, respectively, across the entire arable land over a span of 18 years. This represents a reduction of 48% and 64% in the NT and NTS, respectively, compared to CT. From 2000 to 2018, water erosion-induced soil loss exhibited a slightly increasing trend with a wavelike pattern in CT, NT, and NTS. The spatial distribution of water erosion in China?s arable land was primarily influenced by local precipitation, accounting for 45% to 52% of the total impact on CT, NT, and NTS. Additionally, the soil slope degree played a role, contributing 29% to 36% of the erosion patterns. Overall, NT and NTS demonstrated superior performance in mitigating the soil erosion in the southern regions of China, including the Central South, Southwest, and East China, owing to the substantial local rainfall and steep terrain. In contrast, NT and NTS exhibited a lower but still significant reduction in soil loss in the northern regions of China due to the flat topography and limited rainfall. However, considering the trade-off between economic losses (yield) and ecosystem benefits (erosion control), we recommend implementing NT and NTS primarily in the northern parts of China, such as the Northeast, North China, and Northwest.

 Artículos similares

       
 
Ciprian Moldovan, Sanda Ro?ca, Bogdan Dolean, Raularian Rusu, Cosmina-Daniela Ursu and Titus Man    
Spatial planning decisions form the basis of territorial progress by enhancing the resilience and opportunities for local and regional development. Therefore, decisions made as a result of multidisciplinary studies based on GIS assessment of all involved... ver más
Revista: Applied Sciences

 
Hyun-Ju Oh, Jung-Hoon Park and Hyung-Choon Park    
Pile foundations are used to support superstructures and play an important role in the safety of these structures. The performance of pile foundations generally depends on the conditions of the pile itself and the material under the pile tip(i.e., bottom... ver más
Revista: Buildings

 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Salah Basem Ajjur and Emanuele Di Lorenzo    
Natural groundwater recharge (GR) assessment depends on several hydrogeological and climatic inputs, where uncertainty is inevitable. Assessing how inputs? uncertainty affects GR estimation is important; however, it remains unclear in arid areas. This st... ver más
Revista: Hydrology

 
Rituraj Shukla, Ramesh Rudra, Prasad Daggupati, Colin Little, Alamgir Khan, Pradeep Goel and Shiv Prasher    
The effectiveness of existing and potential best management practices (BMPs) to cropped lands in the Jeannette Creek watershed (Thames River basin, Ontario, Canada) in reducing P loads at its pumped outlets was assessed using the Soil and Water Assessmen... ver más
Revista: Hydrology