ARTÍCULO
TITULO

Convolutional Neural Network-Based Approximation of Coverage Path Planning Results for Parking Lots

Andrius Kri?ciunas    
Dalia Calneryte    
Tautvydas Fyleris    
Tadas Jurgutis    
Dalius Makackas and Rimantas Barauskas    

Resumen

Parking lots have wide variety of shapes because of surrounding environment and the objects inside the parking lot, such as trees, manholes, etc. In the case of paving the parking lot, as much area as possible should be covered by the construction vehicle to reduce the need for manual workforce. Thus, the coverage path planning (CPP) problem is formulated. The CPP of the parking lots is a complex problem with constraints regarding various issues, such as dimensions of the construction vehicle and data processing time and resources. A strategy based on convolutional neural networks (CNNs) for the fast estimation of the CPP?s average track length, standard deviation of track lengths, and number of tracks was suggested in this article. Two datasets of different complexity were generated to analyze the suggested approach. The first case represented a simple case with a working polygon constructed out of several rectangles with applied shear and rotation transformations. The second case represented a complex geometry generated out of rectangles and ellipses, narrow construction area, and obstacles. The results were compared with the linear regression models, with the area of the working polygon as an input. For both generated datasets, the strategy to use an approximator to estimate outcomes led to more accurate results compared to the respective linear regression models. The suggested approach enables us to have rough estimates of a large number of geometries in a short period of time and organize the working process, for example, planning construction time and price, choosing the best decomposition of the working polygon, etc.

 Artículos similares

       
 
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Jui-Fa Chen, Yu-Ting Liao and Po-Chun Wang    
Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable fluctuations in river water levels. This environment necessitates the development of real-time, automated systems for water level detection. Due to degradation, tra... ver más
Revista: Water

 
Joaquim Miguel, Pedro Mendonça, Agnelo Quelhas, João M. L. P. Caldeira and Vasco N. G. J. Soares    
Hiking and cycling have become popular activities for promoting well-being and physical activity. Portugal has been investing in hiking and cycling trail infrastructures to boost sustainable tourism. However, the lack of reliable data on the use of these... ver más
Revista: Future Internet

 
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang     Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so... ver más