ARTÍCULO
TITULO

Machine Learning Generalisation across Different 3D Architectural Heritage

Eleonora Grilli and Fabio Remondino    

Resumen

The use of machine learning techniques for point cloud classification has been investigated extensively in the last decade in the geospatial community, while in the cultural heritage field it has only recently started to be explored. The high complexity and heterogeneity of 3D heritage data, the diversity of the possible scenarios, and the different classification purposes that each case study might present, makes it difficult to realise a large training dataset for learning purposes. An important practical issue that has not been explored yet, is the application of a single machine learning model across large and different architectural datasets. This paper tackles this issue presenting a methodology able to successfully generalise to unseen scenarios a random forest model trained on a specific dataset. This is achieved looking for the best features suitable to identify the classes of interest (e.g., wall, windows, roof and columns).

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences