ARTÍCULO
TITULO

Experimental Study on Extreme Hydrodynamic Loading on Pipelines Part 2: Induced Force Analysis

Behnaz Ghodoosipour    
Jacob Stolle    
Ioan Nistor    
Abdolmajid Mohammadian and Nils Goseberg    

Resumen

Adequate design of pipelines used for oil, gas, water, and wastewater transmission is essential not only for their proper operation but particularly to avoid failure and the possible extreme consequences. This is even more drastic in nearshore environments, where pipelines are potentially exposed to extreme hydrodynamic events, such as tsunami- or storm-surge-induced inundation. The American Society of Civil Engineers (ASCE), in its ASCE7 Chapter 6 on Tsunami Loads and Effects which is the new standard for tsunami impacts and loading, specifically stresses the need to study loads on pipelines located in tsunami-prone areas. To address this issue, this study is the first of its kind to investigate loading on pipelines due to tsunami-like bores. A comprehensive program of physical model experiments was conducted in the Dam-Break Hydraulic Flume at the University of Ottawa, Canada. The tests simulated on-land tsunami flow inundation propagating over a coastal plain. This allowed to record and investigate the hydrodynamic forces exerted on the pipe due to the tsunami-like, dam-break waves. Different pipe configurations, as well as various flow conditions, were tested to investigate their influence on exerted forces and moments. The goal of this study was to propose, based on the results of this study, resistance and lift coefficients which could be used for the design of pipelines located in tsunami-prone areas. The values of the resistance and lift coefficients investigated were found to be in the range of 1 < C R < 3.5 and 0.5 = C L < 3 , respectively. To that end, the study provides an upper envelope of resistance and lift coefficients over a wide range of Froude numbers for design purposes.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más