ARTÍCULO
TITULO

Numerical Study of the Pulsation Process of Spark Bubbles under Three Boundary Conditions

Chunlong Ma    
Dongyan Shi    
Chao Li    
Dongze He    
Guangliang Li and Keru Lu    

Resumen

In this study, a compressible three-phase homogeneous model was established using ABAQUS/Explicit. These models can numerically simulate the pulsation process of cavitation bubbles in the free field, near the flat plate target, and near the curved boundary target. At the same time, these models can numerically simulate the strong nonlinear interaction between the cavitation bubble and its nearby wall boundaries. The mutual flow of liquid and gas and fluid solid coupling were solved by the Euler domain in simulation. The results of the numerical simulation were verified by comparing them with the experimental results. In this study, we used electric spark bubbles to represent cavitation bubbles. A high-speed camera was used to record the pulsation process of cavitation bubbles. This study first verified the pulsation process of cavitation bubbles in the free field, because it was the simplest case. Then we verified the interaction process between cavitation bubbles and different wall boundaries. In order to further confirm the credibility of the numerical simulation results, for each wall surface, this study used two burst distances (10 mm and 25 mm) for simulation verification. The numerical model established in this study could effectively simulate the pulsation characteristics of cavitation bubbles, such as the formation of jets and annular bubbles. After verification, the simulated cavitation bubble was almost the same as the cavitation bubble captured by the high-speed camera in the experiment in terms of time, volume, and shape. In this study, a detailed velocity field of the cavitation bubble collapse stage was obtained, which laid down the foundation for the study of the strong nonlinear interaction between the cavitation bubble and the target plates of different shapes. Compared with the experimental results, we found that the numerical model established by the simulation could accurately simulate the bubble pulsation and jet formation processes. In the experiment, the interval time for the bubble pictures taken by the high-speed camera was 41.66 µs per frame. Using a numerical model, the bubble pulsation process can be simulated at an interval of 1 µs per frame. Therefore, the numerical model established by the simulation could show the movement characteristics of the cavitation bubble pulsation process in more detail.

 Artículos similares

       
 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences

 
Annie Rose Elizabeth, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna and Mondeep Borthakur    
Multiple applications in aerospace utilize pyrotechnic charges for their operation, and these charges are predominantly in the form of granules. One of the most used charges is boron potassium nitrate (BPN), and the present study focuses on mathematicall... ver más
Revista: Aerospace

 
Peng Zhang, Rixin Cheng and Yonghong Li    
Bionic herringbone riblets are applied to relieve the flow near the blade endwall in a linear compressor cascade under the incidence angle of -4° to 6° at a Reynolds number of 382,000. The herringbone riblets are placed at the endwall upstream of the bla... ver más
Revista: Aerospace