ARTÍCULO
TITULO

Control of Flow Past a Circular Cylinder Using a Rotating Control Rod

Ming Zhao and Erfan Taheri    

Resumen

Control of flow past a circular cylinder using a rotating control rod is investigated by conducting two-dimensional numerical simulations with a Reynolds number of 200, a rod-to-cylinder diameter ratio of 0.2, a gap ratio of 0.2, position angles of the control rod between 0° and 180°, and rotation rates between -7 and 7. The rotation rate is positive if the cylinder rotates in the anticlockwise direction. The aim of this paper is to discover the effects of the position angle and the rotation rate on flow control. If the rod is placed at the side (position angle = 90°) or nearly to the side of the cylinder (position angle = 45° and 135°), the rotating rod affects the flow in three ways, depending on its rotation rate: (1) strong negative rotation of the rod weakens the negative free shear layers and reduces the lift; (2) flow through the gap interferes with vortex shedding when the rotation rate is small in either direction; and (3) strong positive rotation of the rod enhances the negative free shear layers and increases the lift coefficient. Placing a rotation rod immediately in front of or behind the cylinder (position angle = 0° or 180°) causes a reduction in the lift coefficient for all rotation rates.

 Artículos similares

       
 
Yongwei Gong, Ge Meng, Kun Tian and Zhuolun Li    
A proposed method for analyzing the effectiveness of rainwater storage tanks (RWSTs) based on various enabling rule scenarios has been proposed to address the issue of incomplete strategies and measures for controlling excessive rainwater runoff. Three e... ver más
Revista: Water

 
Hai Du, Hao Jiang, Zhangyi Yang, Haoyang Xia, Shuo Chen and Jifei Wu    
The characteristic of delayed airfoil stalls caused by the bio-inspired Wavy Leading-Edges (WLEs) has attracted extensive attention. This paper investigated the effect of WLEs on the aerodynamic performance and flow topologies of the airfoil through wind... ver más
Revista: Aerospace

 
Yi Ye, Renliang Chen and Honglei Ji    
This paper presents an active flow control of ship airwake over the deck to improve the safety of helicopter shipboard operations in various angles of wind over deck (WOD). Firstly, an integrated flight dynamics method coupled with ship airwake was devel... ver más
Revista: Aerospace

 
Aristia L. Philippou, Pavlos K. Zachos and David G. MacManus    
High-speed air intakes often exhibit intricate flow patterns, with a specific type of flow instability known as ?buzz?, characterized by unsteady shock oscillations at the inlet. This paper presents a comprehensive review of prior research, focused on un... ver más
Revista: Aerospace

 
Bo Yang, Hesen Yang, Ning Zhao, Hua Liang, Zhi Su and Dongsheng Zhang    
The double-wedge configuration is a typical characteristic shape of the rudder surface of high-speed aircraft. The impact of the shock wave/boundary layer interaction and the shock wave/shock wave interaction resulting from the double wedge on aircraft a... ver más
Revista: Aerospace