Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Mechanical Properties and Damage Evolution of Heated Granite Subjected to Liquid Nitrogen Cooling

Chunbo Zhou    
Feng Gao    
Chengzheng Cai    
Wenqi Zheng and Liupeng Huo    

Resumen

To investigate the effect of liquid nitrogen on the granite failure process, the deterioration effect of liquid nitrogen on heated granite was investigated from experimental and theoretical perspectives. The mechanical properties of heated granite (25, 100, 200, 300, and 400 °C) after different cooling treatments (air cooling and liquid nitrogen cooling) were investigated by uniaxial compression tests. The damage evolution analysis was performed by a statistical damage constitutive model and the dissipation energy ratio was newly defined. The results show that there is an increase in the uniaxial compressive strength of heated granite before 200 °C, which is due to the competitive relationship between the thermal cracking and crack closure. Liquid nitrogen cooling can deteriorate the mechanical properties of heated granite in terms of strength and deformability. At 400 °C, the reduction rates of compressive strength and stiffness between air cooling and liquid nitrogen cooling reached 32.36% and 47.72%, respectively. Liquid nitrogen cooling induces greater initial thermal damage and, consequently, leads to a greater degree of total damage before the peak stress and makes rock easier to be damaged. At 400 °C, the total damage at the peak stress increased from 0.179 to 0.587 after the liquid nitrogen cooling. The difficulty of damage can be quantified by the dissipation energy ratio. In addition, the deterioration of liquid nitrogen on granite is positively related to temperature. This study confirmed the deterioration effect of liquid nitrogen and promoting effect of temperature, providing a theoretical approach to the degradation mechanism of liquid nitrogen.

 Artículos similares

       
 
Hilal Yilanci and Pinar Gezer    
Aim: The objective of this systematic review was to offer quantitative evidence regarding the influence of surface properties on the mechanical stability of miniscrews. Materials and Methods: The comprehensive search strategy involved querying databases,... ver más
Revista: Applied Sciences

 
Matija Zvonaric, Mirta Ben?ic, Ivana Bari?ic and Tihomir Dok?anovic    
The high stiffness of cement-bound aggregate (CBA) is recognized as its main drawback. The stiffness is described by the modulus of elasticity, which is difficult to determine precisely in CBA. Incorporating rubber in these mixtures reduces their stiffne... ver más
Revista: Applied Sciences

 
Yu Yang, Changhao Xin, Yidan Sun, Junzhen Di and Pengfei Liang    
Incomplete data indicate that coal gangue is accumulated in China, with over 2000 gangue hills covering an area exceeding 200,000 mu and an annual growth rate surpassing 800 million tons. This accumulation not only signifies a substantial waste of resour... ver más
Revista: Applied Sciences

 
Hyung-Gyu Park, Seok-Ho Kang, Yong-Gik Kim, Jin-Ho Son, Yeong-Su Kim, Seung-Min Woo and Yu-Shin Ha    
In this study, the physical properties of garlic just before collection were investigated, and garlic-collecting conditions are presented as basic data of design factors that can be utilized during the development of garlic collectors. The physical prope... ver más
Revista: Applied Sciences

 
Qingmeng Yuan, Liang Kong, Qianyong Liang, Jinqiang Liang, Lin Yang, Yifei Dong, Zhigang Wang and Xuemin Wu    
Clarifying the mechanical characteristics of gas hydrate-bearing sediments (GHBS) from a mechanical perspective is crucial for ensuring the long-term, safe, and efficient extraction of natural gas hydrates. In this study, seabed soft clay from the northe... ver más