Inicio  /  Algorithms  /  Vol: 16 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Elevating Univariate Time Series Forecasting: Innovative SVR-Empowered Nonlinear Autoregressive Neural Networks

Juan D. Borrero and Jesus Mariscal    

Resumen

Efforts across diverse domains like economics, energy, and agronomy have focused on developing predictive models for time series data. A spectrum of techniques, spanning from elementary linear models to intricate neural networks and machine learning algorithms, has been explored to achieve accurate forecasts. The hybrid ARIMA-SVR model has garnered attention due to its fusion of a foundational linear model with error correction capabilities. However, its use is limited to stationary time series data, posing a significant challenge. To overcome these limitations and drive progress, we propose the innovative NAR?SVR hybrid method. Unlike its predecessor, this approach breaks free from stationarity and linearity constraints, leading to improved model performance solely through historical data exploitation. This advancement significantly reduces the time and computational resources needed for precise predictions, a critical factor in univariate economic time series forecasting. We apply the NAR?SVR hybrid model in three scenarios: Spanish berry daily yield data from 2018 to 2021, daily COVID-19 cases in three countries during 2020, and the daily Bitcoin price time series from 2015 to 2020. Through extensive comparative analyses with other time series prediction models, our results substantiate that our novel approach consistently outperforms its counterparts. By transcending stationarity and linearity limitations, our hybrid methodology establishes a new paradigm for univariate time series forecasting, revolutionizing the field and enhancing predictive capabilities across various domains as highlighted in this study.

 Artículos similares

       
 
Yong Zhang, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto and Tetsuo Ohata    
Arctic glaciers comprise a small fraction of the world?s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measu... ver más
Revista: Water

 
Jianzhao Liu, Liping Gao, Fenghui Yuan, Yuedong Guo and Xiaofeng Xu    
Soil water shortage is a critical issue for the Southwest US (SWUS), the typical arid region that has experienced severe droughts over the past decades, primarily caused by climate change. However, it is still not quantitatively understood how soil water... ver más
Revista: Water

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Dimitris Fotakis, Panagiotis Patsilinakos, Eleni Psaroudaki and Michalis Xefteris    
In this work, we consider the problem of shape-based time-series clustering with the widely used Dynamic Time Warping (DTW) distance. We present a novel two-stage framework based on Sparse Gaussian Modeling. In the first stage, we apply Sparse Gaussian P... ver más
Revista: Algorithms

 
Nicholas V. Sarlis, Efthimios S. Skordas, Stavros-Richard G. Christopoulos and Panayiotis K. Varotsos    
Here, we employ natural time analysis of seismicity together with non-extensive statistical mechanics aiming at shortening the occurrence time window of the Kahramanmaras-Gazientep M7.8 earthquake. The results obtained are in the positive direction point... ver más
Revista: Applied Sciences