Inicio  /  Algorithms  /  Vol: 15 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Test and Validation of the Surrogate-Based, Multi-Objective GOMORS Algorithm against the NSGA-II Algorithm in Structural Shape Optimization

Yannis Werner    
Tim van Hout    
Vijey Subramani Raja Gopalan and Thomas Vietor    

Resumen

Nowadays, product development times are constantly decreasing, while the requirements for the products themselves increased significantly in the last decade. Hence, manufacturers use Computer-Aided Design (CAD) and Finite-Element (FE) Methods to develop better products in shorter times. Shape optimization offers great potential to improve many high-fidelity, numerical problems such as the crash performance of cars. Still, the proper selection of optimization algorithms provides a great potential to increase the speed of the optimization time. This article reviews the optimization performance of two different algorithms and frameworks for the structural behavior of a b-pillar. A b-pillar is the structural component between a car?s front and rear door, loaded under static and crash requirements. Furthermore, the validation of the algorithm includes a feasibility constraint. Recently, an optimization routine was implemented and validated for a Non-dominated Sorting Genetic Algorithm (NSGA-II) implementation. Different multi-objective optimization algorithms are reviewed and methodically ranked in a comparative study by given criteria. In this case, the Gap Optimized Multi-Objective Optimization using Response Surfaces (GOMORS) framework is chosen and implemented into the existing Institut für Konstruktionstechnik Optimizes Shapes (IKOS) framework. Specifically, the article compares the NSGA-II and GOMORS directly for a linear, non-linear, and feasibility optimization scenario. The results show that the GOMORS outperforms the NSGA-II vastly regarding the number of function calls and Pareto-efficient results without the feasibility constraint. The problem is reformulated to an unconstrained, three-objective optimization problem to analyze the influence of the constraint. The constrained and unconstrained approaches show equal performance for the given scenarios. Accordingly, the authors provide a clear recommendation towards the surrogate-based GOMORS for costly and multi-objective evaluations. Furthermore, the algorithm can handle the feasibility constraint properly when formulated as an objective function and as a constraint.

 Artículos similares

       
 
Mengzhen Wu, Xianghong Xu, Haochen Zhang, Rui Zhou and Jianshan Wang    
As a traditional numerical simulation method for pantograph?catenary interaction research, the pantograph?catenary finite element model cannot be applied to the real-time monitoring of pantograph?catenary contact force, and the computational cost require... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Yuntao Shi, Qi Luo, Meng Zhou, Wei Guo, Jie Li, Shuqin Li and Yu Ding    
Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that ar... ver más
Revista: Information

 
Haohao Guo, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Yi Wei and Fengkui Zhang    
This paper proposes a new method for compensating current measurement errors in shipboard permanent magnet propulsion motors. The method utilizes cascade decoupling second-order generalized integrators (SOGIs) and adaptive linear neurons (ADALINEs) as th... ver más

 
Kenneth Lange    
The current paper proposes and tests algorithms for finding the diameter of a compact convex set and the farthest point in the set to another point. For these two nonconvex problems, I construct Frank?Wolfe and projected gradient ascent algorithms. Altho... ver más
Revista: Algorithms