ARTÍCULO
TITULO

A Novel Method for Fatigue Damage Assessment in Bimodal Processes Considering High- and Low-Frequency Reduction Effects

Yuanzhi Guo    
Shuqing Wang    
Haiyan Guo and Xiancang Song    

Resumen

Due to inherent nonlinearities within floating systems and the second-order wave forces affecting them, the dynamic responses of floating systems manifest as bimodal Gaussian processes. Consequently, the classical spectral fatigue assessment method grounded in the Rayleigh distribution cannot be applied. This paper introduces the double frequency coupled (DFC) method as a spectral fatigue assessment approach, providing an accurate estimation of fatigue damage originating from bimodal Gaussian processes. Within the DFC method, the bimodal Gaussian process is partitioned into two components: low-frequency (LF) and high-frequency (HF) processes. A Gaussian distribution is employed to describe the probability distribution function (PDF) of the amplitude reduction induced by the interaction between LF and HF processes. The PDF of small-cycle fatigue can be computed by convoluting the PDF of HF amplitudes and the reduction amplitude between LF and HF. Similarly, the PDF of large-cycle fatigue can be determined through convolution, which involves the PDF of LF amplitudes and small-cycle fatigue. The overall fatigue damage arising from the bimodal Gaussian process is obtained by directly summing the contributions of small-cycle and large-cycle fatigue. Numerical investigations of the DFC method?s effectiveness are presented through a series of parametric studies, demonstrating its robustness, efficiency, and accuracy within engineering expectations. Furthermore, the DFC method is found to be applicable to both single-slope and two-slope S-N curves.

 Artículos similares

       
 
Shangcong Zhang, Yongfang Li, Xuefei Chen, Ruyi Zhou, Ziran Wu and Taha Zarhmouti    
Fire pumps are the key components of water supply in a firefighting system. At present, there is a lack of fire water pump testing methods that intelligently detect faulty states. Existing testing approaches require manual operation, which leads to low e... ver más
Revista: Water

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Xiongchuan Chen, Shuangcheng Zhang, Bin Wang, Guangwei Jiang, Chuanlu Cheng, Xin Zhou, Zhijie Feng and Jingtao Li    
The motion of a continuously operating reference station is usually dominated by the long-term crustal motions of the tectonic block on which the station is located. Monitoring changes in the coordinates of reference stations located at tectonic plate bo... ver más
Revista: Applied Sciences

 
Su Young Kim and Yoon Sang Kim    
Multiple markers are generally used in augmented reality (AR) applications that require accurate registration, such as medical and industrial fields. In AR using these markers, there are two inevitable problems: (1) geometric shape discrepancies between ... ver más
Revista: Applied Sciences

 
Haojie Lian, Xinhao Li, Leilei Chen, Xin Wen, Mengxi Zhang, Jieyuan Zhang and Yilin Qu    
Neural radiance fields and neural reflectance fields are novel deep learning methods for generating novel views of 3D scenes from 2D images. To extend the neural scene representation techniques to complex underwater environments, beyond neural reflectanc... ver más