Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

The DREAM Endstation at the Linac Coherent Light Source

Peter Walter    
Micheal Holmes    
Razib Obaid    
Lope Amores    
Xianchao Cheng    
James P. Cryan    
James M. Glownia    
Xiang Li    
Ming-Fu Lin    
May Ling Ng    
Joseph Robinson    
Niranjan Shivaram    
Jing Yin    
David Fritz    
Justin James    
Jean-Charles Castagna and Timur Osipov    

Resumen

Free-electron lasers (FEL), with their ultrashort pulses, ultrahigh intensities, and high repetition rates at short wavelength, have provided new approaches to Atomic and Molecular Optical Science. One such approach is following the birth of a photo electron to observe ion dynamics on an ultrafast timescale. Such an approach presents the opportunity to decipher the photon-initiated structural dynamics of an isolated atomic and molecular species. It is a fundamental step towards understanding single- and non-linear multi-photon processes and coherent electron dynamics in atoms and molecules, ultimately leading to coherent control following FEL research breakthroughs in pulse shaping and polarization control. A key aspect for exploring photoinduced quantum phenomena is visualizing the collective motion of electrons and nuclei in a single reaction process, as dynamics in atoms/ions proceed at femtosecond (10−15" role="presentation">-15-15 - 15 s) timescales while electronic dynamics take place in the attosecond timescale (10−18" role="presentation">-18-18 - 18 s). Here, we report on the design of a Dynamic Reaction Microscope (DREAM) endstation located at the second interaction point of the Time-Resolved Molecular and Optical (TMO) instrument at the Linac Coherent Light Source (LCLS) capable of following the photon?matter interactions by detecting ions and electrons in coincidence. The DREAM endstation takes advantage of the pulse properties and high repetition rate of LCLS-II to perform gas-phase soft X-ray experiments in a wide spectrum of scientific domains. With its design ability to detect multi-ions and electrons in coincidence while operating in step with the high repetition rate of LCLS-II, the DREAM endstation takes advantage of the inherent momentum conservation of reaction product ions with participating electrons to reconstruct the original X-ray photon?matter interactions. In this report, we outline in detail the design of the DREAM endstation and its functionality, with scientific opportunities enabled by this state-of-the-art instrument.

Palabras claves

COLTRIMS -  REMI -  gas phase -  CEI -  TMO -  AMO -  LCLS II -  FEL

 Artículos similares