Inicio  /  Applied Sciences  /  Vol: 12 Par: 21 (2022)  /  Artículo
ARTÍCULO
TITULO

Model Predictive Control of Running Biped Robot

Jaeuk Cho and Jong Hyeon Park    

Resumen

With the feet of a biped robot attached insecurely to a terrain, its stability is strongly affected by the characteristics of the terrain on which it runs. Therefore, for stable bipedal running, online motion control based on the states of the robot and the environment is needed. This paper proposes a method for online motion control of a running biped robot on an uneven terrain based on a dual linear inverted pendulum model (D-LIPM) and hierarchical control which consists of linear model predictive control (MPC) and quadratic-problem (QP) based momentum control. The D-LIPM, which splits the nonlinear dynamics model of the running biped robot into two linear models under some assumptions, is proposed to generate the running motion through linear MPC. The D-LIPM is applied to the proposed hierarchical control for stable bipedal running. In the first stage of hierarchy, linear MPC is employed to generate the trajectory of the center of mass (COM) based on the dynamics of D-LIPM to overcome terrain uncertainties such as elevation levels and surface conditions at foot-landing sites. In the second stage, momentum control based on a QP solver is used to generate the angular motions of the robot while following the COM trajectory. Computer simulations with uncertainties on the running terrain were carried out to measure the performance of the proposed method.

 Artículos similares

       
 
Xiaobin Qian, Helong Shen, Yong Yin and Dongdong Guo    
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The no... ver más

 
Dongkeun Lee, Chaeog Lim, Sang-jin Oh, Minjoon Kim, Jun Soo Park and Sung-chul Shin    
Capsizing accidents are regarded as marine accidents with a high rate of casualties per accident. Approximately 89% of all such accidents involve small ships (vessels with gross tonnage of less than 10 tons). Stability calculations are critical for asses... ver más

 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Yongyong Zhao, Jinghua Wang, Guohua Cao and Xu Yao    
This study introduces a reduced-order leg dynamic model to simplify the controller design and enhance robustness. The proposed multi-loop control scheme tackles tracking control issues in legged robots, including joint angle and contact-force regulation,... ver más
Revista: Applied Sciences

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water