ARTÍCULO
TITULO

Dynamic Characteristics of an Underwater Ventilated Vehicle Exiting Water in an Environment with Scattered Ice Floes

Song Zhang    
Wei Lin    
Hao Xu and Tiezhi Sun    

Resumen

The presence of ice floes on the water surface has a significant impact on the complex hydrodynamic process of submersible ventilated vehicles exiting the water. In this paper, we propose numerical simulations based on computational fluid dynamics to investigate the process of a ventilated vehicle exiting water in an ice-water mixture. The Schnerr?Sauer model is used to describe the cavitation, while the turbulence is solved by using the k-? shear stress transport (SST) model. We also introduce the contact coupling method to simulate the rigid collision between the vehicle and the ice floe. We calculated and analyzed the process of the vehicle exiting the water under three conditions: ice-free conditions and in the presence of regularly shaped and irregularly shaped ice floes. The findings indicate that the ice floes contributed to the rapid fragmentation of the water plume to induce the premature collapse of the ventilated cavity and alter its form of collapse. The presence of ice floes intensified the evolution of the flow field close to the vehicle, and their flipping led to a significant volume of splashing water that could have led to the localized secondary closure of the cavity. Moreover, the collision between the vehicle and the ice floes caused pressure pulsations on the surface of the former, with a more pronounced effect observed on the head compared with the cylindrical section. While crossing the ice-water mixture, the vehicle was exposed to water jets formed by the flipping ice floes, which might have led to localized high pressure.

 Artículos similares

       
 
Yuan Wei, Renliang Chen, Ye Yuan and Luofeng Wang    
This study assesses the influence of engine dynamic characteristics on helicopter handling quality during hover and low-speed forward flight. First, we construct the helicopter?engine coupling model (HECM) based on the power-matching relationship between... ver más
Revista: Aerospace

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Dongfeng Yan, Zehang Zhao, Anchen Song, Fengming Li, Lu Ye, Ganchao Zhao and Shan Ma    
The fluidic pintle nozzle, a new method to control the thrust of a solid rocket motor, has been proposed in recent years by combining the pintle with the aerodynamic throat (fluidic throat). The study of static characteristics has proved that it has a re... ver más
Revista: Aerospace