ARTÍCULO
TITULO

A New Model of Bubble Migration Velocity in Deep Water Wellbore Considering Hydrate Phase Transition

Xinxin Zhao    
Faling Yin    
Haiyuan Yao    
Yaqiang Qi and Xin Cao    

Resumen

Mass transfer and phase transition have an important effect on the velocity of bubble migration in deepwater wellbores, and accurate prediction of bubble migration velocity is crucial for calculating the safe shut-in period of deepwater oil and gas wells. Therefore, the effect of bubble dissolution mass transfer and hydrate phase transition on bubble migration behavior in the deepwater environment have attracted extensive attention from researchers in the fields of energy, marine chemistry, and marine engineering safety. In this work, a new model of bubble migration velocity in deepwater is developed, which considers the effect of hydrate phase transition and gas-water bidirectional cross-shell mass transfer during bubble migration. Based on the observation data of bubble migration in deepwater, the reliability of the model in predicting bubble migration velocity is verified. Then, the model is used to calculate and analyze the bubble migration velocity and bubble migration cycle under different initial bubble size, different annular fluid viscosity, and density. The results show that the initial size of bubble and the viscosity of annulus fluid are the main factors affecting the migration velocity of the bubble, but the density of annulus fluid has little effect on the migration velocity of the hydrated bubble and clean bubble. In addition, the migration velocity of the clean bubble gradually increases during the migration process from the bottom to the wellhead, while the migration velocity of the hydrated bubble is divided into a gradually decreasing stage and a slowly increasing stage. The gas consumption and the thickening of hydrate shell in the gradually decreasing stage play a dominant role, and the increase of bubble volume caused by the decrease of pressure in the slowly increasing stage is the most important factor. The formation of the hydrated bubble can significantly reduce the migration velocity of the bubble and effectively prolong the safe shut-in period. This study provides a reference for quantitative description and characterization of complex bubble migration behavior with phase change and mass transfer in deepwater environment.

 Artículos similares

       
 
João Dehon Pontes Filho, Maria Manuela Portela, Ticiana Marinho de Carvalho Studart and Francisco de Assis Souza Filho    
The standardized precipitation index (SPI), is one of the most used drought indices. However, it is difficult to use to monitor the ongoing drought characteristics because it cannot be expeditiously related to precipitation deficits. It also does not pro... ver más
Revista: Water

 
Masoud Jafari Shalamzari, Wanchang Zhang, Atefeh Gholami and Zhijie Zhang    
Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is tim... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Mehmet Sefa Hacibektasoglu, Huseyin Avni Balcioglu, Yigit Uyanikgil and Nilufer Bolukbasi Balcioglu    
The aim of this study is to investigate the effects of serum vitamin D levels on the healing of different bone graft materials. Thirty-six male rats were divided into three groups and fed special feeds containing different amounts of vitamin D for 6 week... ver más
Revista: Applied Sciences

 
Kang Zhao, Qiong Zhou, Enqiang Zhao, Guofen Li and Yanan Dou    
Revista: Infrastructures