Inicio  /  Applied Sciences  /  Vol: 13 Par: 15 (2023)  /  Artículo
ARTÍCULO
TITULO

Two-Dimensional Mesoscale Finite Element Modeling of Concrete Damage and Failure

Rasoul Najafi Koopas    
Natalie Rauter and Rolf Lammering    

Resumen

Methodologies are developed for analyzing failure initiation and crack propagation in highly heterogeneous concrete mesostructures. Efficient algorithms are proposed in Python to generate and pack geometric features into a continuous phase. The continuous phase represents the mortar matrix, while the aggregates and voids of different sizes represent the geometric features randomly distributed within the matrix. The cohesive zone model (CZM) is utilized to investigate failure initiation and crack propagation in mesoscale concrete specimens. Two-dimensional zero-thickness cohesive interface elements (CIEs) are generated at different phases of the concrete mesostructure: within the mortar matrix, aggregates, and at the interfacial transition zone (ITZ). Different traction?separation laws (TSL) are assigned to different phases to simulate potential crack paths in different regions of the mesoscale concrete specimen. The mesoscale finite element simulations are verified using experimental results from the literature, with a focus on implementing mixed-mode fracture and calibrating its corresponding parameters with respect to the experimental data. In addition, the current study addresses the limited exploration of void effects in mesoscale concrete simulations. By investigating voids of diverse sizes and volume fractions, this research sheds light on their influence on the mechanical behavior of concrete materials. The algorithms for generating cohesive interface elements and concrete microstructures are described in detail and can be easily extended to more complex states. This methodology provides an effective tool for the mesostructural optimization of concrete materials, considering specific strength and toughness requirements.

 Artículos similares

       
 
Li Pan, Guoying Wu, Mingwu Zhang, Yuan Zhang, Zhongmei Wang and Zhiqiang Lai    
The functionality of rivers and open diversion channels can be severely impacted when the epipelic algae group that grows on concrete inclined side walls, which are typical of urban rivers, joins the water flow. This study aims to increase the long-dista... ver más
Revista: Water

 
Max Käding and Steffen Marx    
Acoustic emission monitoring (AEM) has emerged as an effective technique for detecting wire breaks resulting from, e.g., stress corrosion cracking, and its application on prestressed concrete bridges is increasing. The success of this monitoring measure ... ver más
Revista: Applied Sciences

 
Fahriye Akar, Ercan Isik, Fatih Avcil, Aydin Büyüksaraç, Enes Arkan and Rabia Izol    
On 6 February 2023, two independent earthquake pairs on the East Anatolian Fault Zone, with epicenters in Pazarcik (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaras province, caused great destruction. Adiyaman and Gölbasi districts of this ci... ver más
Revista: Applied Sciences

 
Iurii Vakaliuk, Silke Scheerer and Manfred Curbach    
In the case of solid slabs made from reinforced concrete that are usually subjected to bending, large areas of the structure are stressed well below their load-bearing capacity or remain stress-free. Contrary to this are shell structures, which can bridg... ver más
Revista: Applied Sciences

 
Chunru Cheng, Linbing Wang, Xingye Zhou and Xudong Wang    
As the main cause of asphalt pavement distress, rutting severely affects pavement safety. Establishing an accurate rutting prediction model is crucial for asphalt pavement maintenance, pavement structure design, and pavement repair. This study explores f... ver más
Revista: Applied Sciences