Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach

Abdelkader Dairi    
Fouzi Harrou    
Ying Sun and Sofiane Khadraoui    

Resumen

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models? performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.

 Artículos similares

       
 
Qian Liu, Xiaofeng Zhao, Jing Zou, Yunzhou Li, Zhijin Qiu, Tong Hu, Bo Wang and Zhiqian Li    
The Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) model serves as the foundation for creating a forecast model to detect lower atmospheric ducts in this study. A set of prediction tests with different forecasting times focusing on the South C... ver más

 
Francisca Lanai Ribeiro Torres, Luana Medeiros Marangon Lima, Michelle Simões Reboita, Anderson Rodrigo de Queiroz and José Wanderley Marangon Lima    
Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant power systems, providing valuable insights into future water inflows to reservoirs and hydropower plants. It relies on complex mathematical models, which, despite t... ver más
Revista: Water

 
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura    
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ... ver más
Revista: Applied Sciences

 
Hu Cai, Jiafu Wan and Baotong Chen    
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ... ver más
Revista: Applied Sciences

 
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu    
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co... ver más
Revista: Aerospace