Inicio  /  Applied Sciences  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Dynamic Behavior of Twin-Spool Rotor-Bearing System with Pedestal Looseness and Rub Impact

Haopeng Zhang    
Runhan Li    
Kuan Lu    
Xiaohui Gu    
Ruijuan Sang and Donglin Li    

Resumen

The twin-spool rotor-bearing system plays a crucial role in the aero-engine. The potential manufacturing defect, assembly error, and abnormal working loads in the rotor-bearing system can induce multiple rotor failures, such as bolt looseness and rub impact. However, the prediction of the fault rotor dynamic behavior for the aero-engine remains a difficult frontier in numerical modeling. We present a dynamic model of the twin-spool rotor-bearing system, the failure model of bearing seat loosening, and the failure model of rub impact by using second-type Lagrangian equations, finite element theory, and the Timoshenko beam theory. In particular, to improve the accuracy of the numerical model, the rotating speed control equation and the actual aero-engine parameter are taken into account. An analysis is conducted on the impact of critical failure parameters, such as looseness stiffness and rub impact initial gap, on the vibration behaviors of the essential components of the twin-spool rotor system and on the entire engine. Additionally, this paper examines the twin-spool rotor-bearing system affected by looseness?rub coupled failures. The obtained conclusions can serve as a theoretical foundation for optimizing the structure and diagnosing faults in the aero-engine rotor system.

 Artículos similares

       
 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
Ruslans Babajans, Darja Cirjulina, Filips Capligins, Deniss Kolosovs and Anna Litvinenko    
The current work is focused on studying the performance of the Pecora?Carroll synchronization technique to achieve synchronization between the analog and discrete chaos oscillators. The importance of this study is supported by the growing applications of... ver más
Revista: Applied Sciences

 
Zihang Xu and Chiawei Chu    
Ensuring the sustainability of transportation infrastructure for electric vehicles (e-trans) is increasingly imperative in the pursuit of decarbonization goals and addressing the pressing energy shortage. By prioritizing the development and maintenance o... ver más
Revista: Applied Sciences

 
Ryszard Dindorf    
This article presents the conceptual design, operation principle, dynamic modeling, and simulation results of a discrete incremental hydraulic positioning system (DIHPS) intended for use in high-precision, heavy-load industrial automation solutions. An o... ver más
Revista: Applied Sciences

 
Erman Ozpolat and Arif Gulten    
This paper explores the synchronization and implementation of a novel hyperchaotic system using an adaptive observer. Hyperchaotic systems, known for possessing a greater number of positive Lyapunov exponents compared to chaotic systems, present unique c... ver más
Revista: Applied Sciences