Inicio  /  Algorithms  /  Vol: 13 Par: 3 (2020)  /  Artículo
ARTÍCULO
TITULO

GeoAI: A Model-Agnostic Meta-Ensemble Zero-Shot Learning Method for Hyperspectral Image Analysis and Classification

Konstantinos Demertzis and Lazaros Iliadis    

Resumen

Deep learning architectures are the most effective methods for analyzing and classifying Ultra-Spectral Images (USI). However, effective training of a Deep Learning (DL) gradient classifier aiming to achieve high classification accuracy, is extremely costly and time-consuming. It requires huge datasets with hundreds or thousands of labeled specimens from expert scientists. This research exploits the MAML++ algorithm in order to introduce the Model-Agnostic Meta-Ensemble Zero-shot Learning (MAME-ZsL) approach. The MAME-ZsL overcomes the above difficulties, and it can be used as a powerful model to perform Hyperspectral Image Analysis (HIA). It is a novel optimization-based Meta-Ensemble Learning architecture, following a Zero-shot Learning (ZsL) prototype. To the best of our knowledge it is introduced to the literature for the first time. It facilitates learning of specialized techniques for the extraction of user-mediated representations, in complex Deep Learning architectures. Moreover, it leverages the use of first and second-order derivatives as pre-training methods. It enhances learning of features which do not cause issues of exploding or diminishing gradients; thus, it avoids potential overfitting. Moreover, it significantly reduces computational cost and training time, and it offers an improved training stability, high generalization performance and remarkable classification accuracy.

 Artículos similares

       
 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms