Inicio  /  Hydrology  /  Vol: 9 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Downscaling WGHM-Based Groundwater Storage Using Random Forest Method: A Regional Study over Qazvin Plain, Iran

Soroush Zarghami Dastjerdi    
Ehsan Sharifi    
Rozita Rahbar and Bahram Saghafian    

Resumen

Climate change, urbanization, and a growing population have led to a rapid increase in groundwater (GW) use. As a result, monitoring groundwater changes is essential for water managers and decision-makers. Due to the lack of reliable and insufficient in situ information, remote sensing and hydrological models may be counted as alternative sources to assess GW storage changes on regional and global scales. However, often, these hydrological models have a low spatial resolution for water-related applications on a small scale. Therefore, the main purpose of this study is to downscale the GW storage anomaly (GWSA) of the WaterGAP Global Hydrology Model (WGHM) from a coarse (0.5 degrees) to a finer spatial resolution (0.1 degrees) using fine spatial resolution auxiliary datasets (0.1 degrees), such as evaporation (E), surface (SRO), subsurface runoff (SSRO), snow depth (SD), and volumetric soil water (SWVL), from the ERA5-Land model, as well as the global precipitation (Pre) measurement (GPM-IMERG) product. The Qazvin Plain in central Iran was selected as the case study region, as it faces a severe decline in GW resources. Different statistical regression models were tested for the GWSA downscaling to find the most suitable method. Moreover, since different water budget components (such as precipitation or storage) are known to have temporal lead or lag relative to each other, the approach also incorporates a time shift factor. The most suitable regression model with the highest skill score during the training-validation was selected and applied to predict the final 0.1-degree GWSA. The downscaled results showed high agreement with the in situ groundwater levels over the Qazvin Plain on both interannual and monthly time scales, with a correlation coefficient of 0.989 and 0.62, respectively. Moreover, the downscaled product represents clear proof that the developed downscaling technique is able to learn from high-resolution auxiliary data to capture GWSA features at a higher spatial resolution. The major benefit of the proposed method lies in the utilization of only the auxiliary data that are available with global coverage and are free of charge, while not requiring in situ GW records for training or prediction. Therefore, the proposed downscaling technique can potentially be applied at a global scale and to aquifers in other geographical regions.

 Artículos similares

       
 
Xiang Liu, Jin Zhang, Wenqing Shi, Min Wang, Kai Chen and Li Wang    
Understanding the drivers of macroinvertebrate community structure is fundamental for adequately controlling pollutants and managing ecosystems under global change. In this study, the abundance and diversity of benthic macroinvertebrates, as well as thei... ver más
Revista: Water

 
Jae Young Seo and Sang-Il Lee    
Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we p... ver más
Revista: Water

 
Mmasabata Dolly Molekoa, Ram Avtar, Pankaj Kumar, Huynh Vuong Thu Minh and Tonni Agustiono Kurniawan    
Despite being a finite resource, both the quality and quantity of groundwater are under tremendous pressure due to rapid global changes, viz. population growth, land-use/land-cover changes (LULC), and climate change. The 6th Sustainable Development Goal ... ver más
Revista: Water

 
Husnain Haider, Mohammed Hammed Alkhowaiter, Md. Shafiquzzaman, Saleem S. AlSaleem, Meshal Almoshaogeh and Fawaz Alharbi    
Original Canadian Council of Minster of the Environment Water Quality Index (CCME WQI) is being used for assessing the water quality of surface water sources and distribution systems on a case by case basis. Its full potential as a management tool for co... ver más
Revista: Water

 
Qingyan Wang, Longzhi Sun and Xuan Yang    
Rice yield is essential to global food security under increasingly frequent and severe climate change events. Spatial analysis of rice yields becomes more critical for regional action to ensure yields and reduce climate impacts. However, the understandin... ver más