Inicio  /  Agriculture  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection

Qing Dong    
Lina Sun    
Tianxin Han    
Minqi Cai and Ce Gao    

Resumen

Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses previous spatial pooling methods with our uniquely designed Multi-Level Spatial Pyramid Pooling (MTSPPF). Using a lightweight unit, it integrates convolution, normalization, and activation operations. It excels in capturing multi-scale features, ensuring rich extraction of key information at various scales. Notably, MTSPPF not only enhances detection accuracy but also reduces the parameter size, making it ideal for lightweight pest detection models. Additionally, we introduced the Involution and Efficient Channel Attention (ECA) attention mechanisms to enhance contextual understanding. We also replaced traditional upsampling with Content-Aware ReAssembly of FEatures (CARAFE), which enable the model to achieve higher mean average precision in detection. Testing on a pest dataset showed improved accuracy while reducing parameter size. The mAP50 increased from 87.9% to 90.7%, and the parameter count decreased from 7.03 M to 6.09 M. We further validated the PestLite model using the IP102 dataset, and on the other hand, we conducted comparisons with mainstream models. Furthermore, we visualized the detection targets. The results indicate that the PestLite model provides an effective solution for real-time target detection in agricultural pests.

 Artículos similares

       
 
Jianlei Qiao, Yonglu Lv, Yucai Feng, Chang Liu, Yi Zhang, Jinying Li, Shuang Liu and Xiaohui Weng    
At present, the electronic nose has became a new technology for the rapid detection of pesticides. However, the technique may misidentify them for samples that have not been involved in training. Therefore, a hybrid model based on unsupervised and superv... ver más
Revista: Agronomy

 
Bin Li, Huazhong Lu, Xinyu Wei, Shixuan Guan, Zhenyu Zhang, Xingxing Zhou and Yizhi Luo    
Accurate litchi identification is of great significance for orchard yield estimations. Litchi in natural scenes have large differences in scale and are occluded by leaves, reducing the accuracy of litchi detection models. Adopting traditional horizontal ... ver más
Revista: Agronomy

 
Wenji Yang and Xiaoying Qiu    
The damage caused by pests to crops results in reduced crop yield and compromised quality. Accurate and timely pest detection plays a crucial role in helping farmers to defend against and control pests. In this paper, a novel crop pest detection model na... ver más
Revista: Agriculture

 
Yunsong Jia, Qingxin Zhao, Yi Xiong, Xin Chen and Xiang Li    
The issues of inadequate digital proficiency among agricultural practitioners and the suboptimal image quality captured using mobile smart devices have been addressed by providing appropriate guidance to photographers to properly position their mobile de... ver más
Revista: Agriculture

 
Zhengyang Zhong, Lijun Yun, Feiyan Cheng, Zaiqing Chen and Chunjie Zhang    
This paper proposes a lightweight and efficient mango detection model named Light-YOLO based on the Darknet53 structure, aiming to rapidly and accurately detect mango fruits in natural environments, effectively mitigating instances of false or missed det... ver más
Revista: Agriculture