Inicio  /  Applied Sciences  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Channel Emulator Framework for Underwater Acoustic Communications

Indrakshi Dey and Nicola Marchetti    

Resumen

In this paper, we develop a tractable mathematical model and an emulation framework for communicating information through water using acoustic signals. Water is considered one of the most complex media to model due to its vastness and variety of characteristics, which depend on the scenario, the type of water body (lakes, rivers, tanks, sea, etc.), and the geographical location of the water body being considered. Our proposed mathematical model involves the concept of damped harmonic oscillators to represent the medium (water); Milne?s oscillator technique is used to map the interaction between the acoustic signal and water. Wave equations formulated for acoustic pressure and acoustic wave velocity are employed to characterise the travelling acoustic signal. The signal strength, phase shift, and time delay generated from the mathematical model are then inputted into a Simulink-based emulator framework to generate channel samples and channel impulse responses. The emulator utilises the wide sense stationary uncorrelated scattering (WSSUS) assumption and a finite sum-of-sinusoids (SOS) approach with a uniformly distributed phase to generate the channel samples. By utilising this emulator platform, it becomes feasible to generate profiles for amplitude variation, the Doppler shift, and spread experienced by any travelling signal in various underwater communication scenarios. Such a platform can be employed to simulate different communication scenarios, underwater network topologies, and data for training various learning models. Additionally, it can predict the performance of different modulation, multiplexing, error correction, and multi-access techniques for underwater acoustic communication (UWAC) systems.

 Artículos similares

       
 
Junting Wang, Tianhe Xu, Wei Huang, Liping Zhang, Jianxu Shu, Yangfan Liu and Linyang Li    
Underwater sound speed is one of the most significant factors that affects high-accuracy underwater acoustic positioning and navigation. Due to its complex temporal variation, the forecasting of the underwater sound speed field (SSF) becomes a challengin... ver más

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures

 
Kangshen Xiang, Weijie Chen, Siddiqui Aneeb and Weiyang Qiao    
Future UHBR (Ultra-High Bypass-Ratio) engines might cause serious ?turbine noise storms? but, at present, turbine noise prediction capability is lacking. The large turning angle of the turbine blade is the first major factor deserving special attention. ... ver más
Revista: Aerospace

 
Mohammed Saïd Kasttet, Abdelouahid Lyhyaoui, Douae Zbakh, Adil Aramja and Abderazzek Kachkari    
Recently, artificial intelligence and data science have witnessed dramatic progress and rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-... ver más
Revista: Aerospace

 
Chuyang Yang and John H. Mott    
Aviation is a vital modern transportation sector connecting millions of passengers globally. Sustainable aviation development holds substantial community benefits, necessitating effective management of its environmental impacts. This paper addresses the ... ver más
Revista: Aerospace