Inicio  /  Coatings  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Surface Functionalization of Bamboo with Silver-Reduced Graphene Oxide Nanosheets to Improve Hydrophobicity and Mold Resistance

Dhivyabharathi Balakrishnan and Cheng-I Lee    

Resumen

A natural polyphenolic compound was used to assemble nanocomposites. Owing to its stable bioactive properties, bamboo has earned significant attention in material science. Its high nutrient content and hydrophilicity makes bamboo more vulnerable to mold attacks and shortened shelf lives. To produce efficient, multipurpose, long-life bamboo products, a novel technique involving an immersion dry hydrothermal process was applied to impregnate the bamboo with polyphenol-assisted silver-reduced graphene oxide nanosheets. Curcumin (Cur), a natural polyphenol found in the rhizome of Curcuma longa, was used in the preparation of curcumin-enhanced silver-reduced graphene oxide nanosheets (Cur-AgrGONSs). The nanocomposites and nanocomposite-impregnated bamboo materials were examined by field emission scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. At the same time, a phytopathogen was isolated from infected bamboo products and identified by internal transcribed spacer (ITS) sequences. The nanocomposites effectively inhibited the growth of the isolated fungus. The mold resistance and moisture content of both the treated and untreated bamboo timbers were also examined to determine the efficiency of the prepared nanocomposite. The antifungal activity and hydrophobicity of the bamboo materials were significantly enhanced after the incorporation of curcumin-enriched silver-loaded reduced graphene oxide nanosheets (B@Cur-AgrGONSs). This research outcome confirms that the nanocomposite is a well-organized antimicrobial material for different advanced domains.

 Artículos similares

       
 
Shuo Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Ping Zhang and Guozhe Meng    
Graphene oxide (GO), derived from the two-dimensional nanosheet graphene, has received unprecedented attention in the field of metal corrosion protection owing to its excellent barrier performance and various active functional groups. In this review, the... ver más
Revista: Coatings

 
Qi Qiu, Mingchang Gao, Changtao Shao, Shaofang Sun, Yusen Liu and Huawei Zhang    
Membrane fouling is a key factor limiting the application of a membrane bioreactor (MBR), and membrane-surface modification holds the potential to control membrane fouling and solves this problem. In the research, novel nanocomposite membranes were desig... ver más
Revista: Water

 
Espedito Vassallo, Marco Aloisio, Matteo Pedroni, Francesco Ghezzi, Pierfrancesco Cerruti and Riccardo Donnini    
Poly(butylene succinate) (PBS) films were processed by a radio frequency (RF; 13.56 MHz) low-pressure plasma of oxygen and argon/oxygen, and an oxygen plasma with an argon post-crosslinking plasma to improve their wettability property. Specimens were tre... ver más
Revista: Coatings

 
Wenpeng Yu, Ying Jiang, Feng Lin, Jichun Liu and Jianliang Zhou    
Valve replacement is the mainstay of treatment for end-stage valvular heart disease, but varying degrees of defects exist in clinically applied valve implants. A mechanical heart valve requires long-term anti-coagulation, but the formation of blood clots... ver más
Revista: Coatings

 
Raquel O. Cristóvão, Rita A. M. Barros, João G. Pinho, Lília S. Teixeira, Márcia C. Neves, Mara G. Freire, Joaquim L. Faria, Valéria C. Santos-Ebinuma, Ana P. M. Tavares and Cláudia G. Silva    
L-asparaginase (ASNase, EC 3.5.1.1) is an amidohydrolase enzyme known for its anti-cancer properties, with an ever-increasing commercial value. Immobilization has been studied to improve the enzyme?s efficiency, enabling its recovery and reuse, enhancing... ver más
Revista: Applied Sciences