ARTÍCULO
TITULO

ShipGen: A Diffusion Model for Parametric Ship Hull Generation with Multiple Objectives and Constraints

Noah J. Bagazinski and Faez Ahmed    

Resumen

Ship design is a years-long process that requires balancing complex design trade-offs to create a ship that is efficient and effective. Finding new ways to improve the ship design process could lead to significant cost savings in the time and effort required to design a ship, as well as cost savings in the procurement and operation of a ship. One promising technology is generative artificial intelligence, which has been shown to reduce design cycle times and create novel, high-performing designs. In a literature review, generative artificial intelligence was shown to generate ship hulls; however, ship design is particularly difficult, as the hull of a ship requires the consideration of many objectives. This paper presents a study on the generation of parametric ship hull designs using a parametric diffusion model that considers multiple objectives and constraints for hulls. This denoising diffusion probabilistic model (DDPM) generates the tabular parametric design vectors of a ship hull, which are then constructed into a point cloud and mesh for performance evaluation. In addition to a tabular DDPM, this paper details adding guidance to improve the quality of the generated parametric ship hull designs. By leveraging a classifier to guide sample generation, the DDPM produced feasible parametric ship hulls that maintained the coverage of the initial training dataset of ship hulls with a 99.5% rate, a 149× improvement over random sampling of the design vector parameters across the design space. Parametric ship hulls produced using performance guidance saw an average 91.4% reduction in wave drag coefficients and an average 47.9× relative increase in the total displaced volume of the hulls compared to the mean performance of the hulls in the training dataset. The use of a DDPM to generate parametric ship hulls can reduce design times by generating high-performing hull designs for future analysis. These generated hulls have low drag and high volume, which can reduce the cost of operating a ship and increase its potential to generate revenue.

 Artículos similares

       
 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Bartosz Opitek, Pawel L. Zak, Janusz Lelito and Vincent Vignal    
A model of α" role="presentation" style="position: relative;">??a a -Mg grain growth in an amorphous Mg72" role="presentation" style="position: relative;">Mg72Mg72 Mg 72 Zn28" role="presentation" style="position: relative;">Zn28Zn28 Zn 28 allo... ver más
Revista: Applied Sciences

 
Tomasz Józwiak and Urszula Filipkowska    
This study aimed to identify the possibility of using rapeseed husks (RH) as an unconventional sorbent for removing acidic (AR18, AY23) and basic (BR46, BV10) dyes from aqueous solutions. Its scope included, i.a.: sorbent characterization (FTIR, pHPZC), ... ver más
Revista: Applied Sciences

 
Qiang Cheng, Gun Huang, Zhiqiang Li, Jie Zheng and Qinming Liang    
The gas contained in coal plays a crucial role in triggering coal and gas outbursts. During an outburst, a large quantity of gas originally absorbed by coal is released from pulverized coal. The role this part of the gas plays in the process of coal and ... ver más
Revista: Applied Sciences

 
Zhigang Ren, Shize Yang, Jiaji Zhang, Qiankun Wang, Shuqiang Gui, Junli Zhou, Yuyang Tang, Ke Zhu, Chuxiong Shen, Zhihua Xiong, Jinlong Sun, Xinpeng Qiu and Zhuo Chen    
The discharge of warm water from water source heat pump (WSHP) energy stations can cause local changes in the water temperature, leading to changes in the water quality around and downstream of the discharge outlet, resulting in a cumulative effect that ... ver más
Revista: Water