Inicio  /  Applied Sciences  /  Vol: 11 Par: 24 (2021)  /  Artículo
ARTÍCULO
TITULO

A Macro?Micro Damage Model for Rock under Compression Loading

Zhixiong Peng    
Yawu Zeng    
Xi Chen and Shufan Cheng    

Resumen

Rock damage caused by its microcrack growth has a great influence on the deformation and strength properties of rock under compressive loading. Considering the interaction of wing cracks and the additional stress caused by rock bridge damage, a new calculation model for the mode-I stress intensity factor at wing crack tip was proposed in this study. The proposed calculation model for the stress intensity factor can not only accurately predict the cracking angle of wing crack, but can also simulate the whole range of variation of wing crack length from being extremely short to very long. Based on the modified stress intensity factor, a macro?micro damage model for rock materials was also established by combining the relationship between microcrack growth and macroscopic strain. The proposed damage model was verified with the results from the conventional triaxial compression test of sandstone sample. The results show that the proposed damage model can not only continuously simulate the stress-strain curves under different confining pressures, but also can better predict the peak strength. Furthermore, the sensitivities of initial crack size, crack friction coefficient, fracture toughness, initial damage and parameter m on the stress-strain relationship are discussed. The results can provide a theoretical reference for understanding the effect of microcrack growth on the progressive failure of rock under the compressive loading.

 Artículos similares

       
 
Kun Zhang, Pengbo Chang, Jianxi Ren, Zheng Liu and Ke Wang    
The fractured rock mass in the western cold region is affected by freezing and thawing disasters and is prone to local damage and fracture along the fissures? ends. The fatigue damage induced by repeated frost heave and traffic loads seriously endangers ... ver más
Revista: Applied Sciences

 
Ruishan Xing, Gang Li, Fan Wang and Yang Yang    
To ensure the overall continuity of displacement and out-of-plane stress in composite laminate structures and to quantitatively analyze the mechanical properties of composite materials after damage or repair, a finite element solution method is applied b... ver más
Revista: Aerospace

 
Jaehyun Shin and Dong Sop Rhee    
As the frequency and intensity of natural and social disasters increase due to climate change, damage caused by disasters affects urban areas and facilities. Of those disasters, inundation occurs in urban areas due to rising water surface elevation becau... ver más
Revista: Applied Sciences

 
Jun Wu, Wen Wang, Minghui Lu and Yu Hu    
A metal fatigue damage model is established in this study by employing real-time strain monitoring to evaluate the damage state of metal materials. The fatigue life simulation, based on crystal plasticity finite element analysis, establishes the constitu... ver más
Revista: Applied Sciences

 
?tefan Bila?co and Titus-Cristian Man    
On a global scale, traffic incidents are a leading cause of mortality and material damage. Romania exhibits the highest rate of road traffic fatalities both in the European Union and worldwide, requiring a comprehensive examination of its overall influen... ver más
Revista: Applied Sciences