Inicio  /  Applied Sciences  /  Vol: 13 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Surface Modification of Cellulose Nanocrystals (CNCs) to Form a Biocompatible, Stable, and Hydrophilic Substrate for MRI

Fathyah Whba    
Faizal Mohamed    
Mohd Idzat Idris and Mohd Syukri Yahya    

Resumen

This study focused on surface modification of cellulose nanocrystals (CNCs) to create a biocompatible, stable, and hydrophilic substrate suitable for use as a coating agent to develop a dual-contrast composite material. The CNCs were prepared using acid hydrolysis. Hydrolysis was completed using 64% sulfuric acid at 45 °C for 1 h, which was combined with polyethylene glycol and sodium hydroxide (PEG/NaOH). The yield of samples exhibited prominent physicochemical properties. Zeta (?) potential analysis showed that the CNCs sample had excellent colloidal stability with a highly negative surface charge. Transmission electron microscopy (TEM) analysis confirmed that the CNCs sample had a rod-like morphology. On the other hand, field-emission scanning electron microscopy (FESEM) analysis showed that the acid hydrolysis process caused a significant reduction in particle size and changed surface morphology. In addition, cellulose nanocrystals with polyethylene glycol and sodium hydroxide (CNCs-PEG/NaOH) have many noteworthy properties such as colloidal stability, small hydrodynamic size, and water dispersibility. Furthermore, the MTT assay test on Hep G2 cells demonstrated good biocompatibility of the CNCs-PEG/NaOH and did not exhibit any cytotoxic effects. Hence, CNCs-PEG/NaOH holds the potential to serve as a dual-contrast agent for MRI techniques and other biomedical applications.

 Artículos similares

       
 
Jun Wang, Bo Yang, Bingchen Liang, Zai-Jin You, Zhenlu Wang and Zhaowei Wang    
In this study, laboratory experiments were conducted to investigate the influence of changes in storm wave height and water level on beach response in a medium-scale wave flume. A schematic storm was simulated (rising, apex, and waning phases). A non-int... ver más

 
Yuting He, Jiantao Lin, Yuchuan Yang, Minghua Liu and Yifan Liu    
Modified sludge biochar, recognized for its notable economic and environmental benefits, demonstrates potential as an effective catalyst for peroxydisulfate (PDS) activation. Nevertheless, the specific mechanisms underlying its catalytic performance requ... ver más
Revista: Water

 
Yang Bai, Yin Pang, Zheng Wu, Xi Li, Jiang Jing, Hongbin Wang and Zheng Zhou    
A manganese dioxide-modified red mud (Mn-RM) was developed as an adsorbent for the effective removal of lead ions (Pb2+) from wastewater. Various methods were used to characterize the prepared Mn-RM, analyze its adsorption performance, and evaluate the a... ver más
Revista: Water

 
Maxim Sergeevich Vorobyov, Elizaveta Alekseevna Petrikova, Vladislav Igorevich Shin, Pavel Vladimirovich Moskvin, Yurii Fedorovich Ivanov, Nikolay Nikolaevich Koval, Tamara Vasil`evna Koval, Nikita Andreevich Prokopenko, Ruslan Aleksandrovich Kartavtsov and Dmitry Alekseevich Shpanov    
A niobium film on an AISI 5135 steel substrate was exposed to submillisecond pulsed electron-beam irradiation with controlled energy modulation within a pulse to increase the film?substrate adhesion. This modulated irradiation made it possible to dope th... ver más
Revista: Coatings

 
Shuo Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Ping Zhang and Guozhe Meng    
Graphene oxide (GO), derived from the two-dimensional nanosheet graphene, has received unprecedented attention in the field of metal corrosion protection owing to its excellent barrier performance and various active functional groups. In this review, the... ver más
Revista: Coatings