ARTÍCULO
TITULO

Reliability Analysis of the Deep-Sea Horizontal Clamp Connector Based on Multi-Source Information from an Engineering Background

Weifeng Liu    
Feihong Yun    
Gang Wang    
Liquan Wang and Shaoming Yao    

Resumen

As a key piece of equipment in underwater production system, a reliability study of deep-sea connectors has important theoretical significance and engineering value for increasing fault-free operation time, improving engineering safety, and reducing maintenance costs. However, the diverse failure modes of connectors and the lack of high-quality and credible reliability data can lead to biased analysis outcomes. To tackle this problem, this study aims to establish a reliability model for deep-sea horizontal clamp connectors. Based on the actual engineering background, a fault tree model for deep-sea horizontal clamp connectors is developed, and the distribution types of bottom events are analyzed concerning the failure mechanism. To enhance the model?s credibility, a multi-source information approach is employed, combining prior product information, expert experience, and design information to quantitatively solve the reliability probability of the connector. The expert experience is quantified using the fuzzy quantitative analysis method, while the design information is estimated by developing a corrosion prediction model combined with grey theory. Thus, the reliability assessment of deep-sea horizontal clamp connectors is completed. Factory Acceptance Test (FAT) is performed on the improved connectors, and the closed-loop work of reliability analysis is completed.

 Artículos similares

       
 
Piotr Bortnowski, Robert Król, Natalia Suchorab-Matuszewska, Maksymilian Ozdoba and Mateusz Szczerbakowicz    
This study examines the optimization of ore receiving bins in underground copper mines, targeting the reduction of rapid wear and tear on bin components. The investigation identifies the primary wear contributors as the force exerted by the accumulated o... ver más
Revista: Applied Sciences

 
Jiancong Xu, Chen Sun and Guorong Rui    
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorit... ver más
Revista: Applied Sciences

 
M. Domaneschi, R. Cucuzza, L. Sardone, S. Londoño Lopez, M. Movahedi and G. C. Marano    
Random vibration analysis is a mathematical tool that offers great advantages in predicting the mechanical response of structural systems subjected to external dynamic loads whose nature is intrinsically stochastic, as in cases of sea waves, wind pressur... ver más
Revista: Computation

 
Saima Bhatti, Asif Ali Shaikh, Asif Mansoor and Murtaza Hussain    
Machinery components undergo wear and tear over time due to regular usage, necessitating the establishment of a robust prognosis framework to enhance machinery health and avert catastrophic failures. This study focuses on the collection and analysis of v... ver más
Revista: Applied Sciences

 
Hongyu Shao, Sizhe Pan, Yufei Song and Quanfu Li    
In the context of rapid product iteration, design conflicts arise from discrepancies in designers? understanding of user needs, influenced by subjective preferences, behavioural stances, and other factors. This paper proposes a product conceptual design ... ver más
Revista: Applied Sciences