ARTÍCULO
TITULO

Experimental and Numerical Analysis of Supporting Forces and Lashing Forces in a Ship Cargo Securing Scheme

Mengxiang Li    
Guo Wang    
Kun Liu    
Yue Lu and Jiaxia Wang    

Resumen

The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this study, an independently designed cylindrical cargo securing scheme with supporting structures was adopted for investigation. Utilizing a sway device, three-degree-of-freedom coupled motion encountered during ship transportation was obtained, and data regarding changes in the support forces at the foundations and tension forces in the lashing ropes were collected. Subsequently, numerical simulations were conducted using the multibody dynamics software ADAMS 2020. The results obtained from the simulations were compared with the experimental data. The overall tendencies were accurately predicted in the numerical analysis. It was observed that the difference of the peak support forces between the numerical simulation results and the experimental data were within a 10% margin. In terms of the lashing ropes, the difference was limited, within 9%. These findings demonstrate that numerical simulation techniques can provide valuable insights for verifying the safety of practical cargo securing systems.

Palabras claves

 Artículos similares

       
 
Huawei Sun, Anran Ju, Wentian Chang, Jingfei Liu, Jiayi Liu and Hanbing Sun    
Assessing the safety of amphibious aircraft hinges significantly on two key factors: wave-added resistance and motion stability during takeoff and landing on water surfaces. To tackle this, we employed the Reynolds-averaged Navier?Stokes (RANS) equations... ver más

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water

 
Dann De la Torre, Veneranda Garcés-Chávez, Juan De Dios Sanchez-Lopez, Kevin A. O?Donnell, Juan Ivan Nieto-Hipólito and Rosario Isidro Yocupicio-Gaxiola    
In this work, we report an optofluidic system for manipulation of orientation of zeolite crystals near the bottom of a rectangular cross-sectional, straight, quartz microfluidic channel. Manipulation is accomplished by using two computer-controlled syrin... ver más
Revista: Applied Sciences

 
Vito Vasilis Zheku, Diego Villa, Benedetto Piaggio, Stefano Gaggero and Michele Viviani    
During the early design stage of an underwater vehicle, the correct assessment of its manoeuvrability is a crucial task. Conducting experimental tests still has high costs, especially when dealing with small vehicles characterized by low available budget... ver más